[1] | Bergeron, N.; Billey, S., RC-graphs and Schubert polynomials, Exp. Math., 2, 4, 257-269 (1993) ·Zbl 0803.05054 |
[2] | I.N. Bernšteı̆n, I.M. Gel′fand, S.I. Gel′fand, Schubert cells, and the cohomology of the spaces G/P, Uspehi Mat. Nauk 28 (3(171)) (1973) 3-26.; I.N. Bernšteı̆n, I.M. Gel′fand, S.I. Gel′fand, Schubert cells, and the cohomology of the spaces G/P, Uspehi Mat. Nauk 28 (3(171)) (1973) 3-26. ·Zbl 0286.57025 |
[3] | Billey, S. C.; Jockusch, W.; Stanley, R. P., Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., 2, 4, 345-374 (1993) ·Zbl 0790.05093 |
[4] | L.J. Billera, J.S. Provan, A decomposition property for simplicial complexes and its relation to diameters and shellings, Second International Conference on Combinatorial Mathematics New York, 1978, New York Acad. Science, New York, 1979, pp. 82-85.; L.J. Billera, J.S. Provan, A decomposition property for simplicial complexes and its relation to diameters and shellings, Second International Conference on Combinatorial Mathematics New York, 1978, New York Acad. Science, New York, 1979, pp. 82-85. ·Zbl 0484.52006 |
[5] | A. Björner, Orderings of coxeter groups, Combinatorics and Algebra (Boulder, Co., 1983), American Mathematical Society, Providence, RI, 1984, pp. 175-195.; A. Björner, Orderings of coxeter groups, Combinatorics and Algebra (Boulder, Co., 1983), American Mathematical Society, Providence, RI, 1984, pp. 175-195. ·Zbl 0594.20029 |
[6] | Björner, A.; Korte, B.; Lovász, L., Homotopy properties of greedoids, Adv. Appl. Math., 6, 4, 447-494 (1985) ·Zbl 0642.05014 |
[7] | Björner, A.; Las Vergnas, M.; Sturmfels, B.; White, N.; Ziegler, G. M., Oriented matroids (1999), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0944.52006 |
[8] | Björner, A.; Wachs, M., Bruhat order of Coxeter groups and shellability, Adv. in Math., 43, 1, 87-100 (1982) ·Zbl 0481.06002 |
[9] | Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., (4)7, 53-88 (1974), (Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I) ·Zbl 0312.14009 |
[10] | S. Fomin, A.N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183-190.; S. Fomin, A.N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183-190. |
[11] | Fomin, S.; Stanley, R. P., Schubert polynomials and the nil-Coxeter algebra, Adv. in Math., 103, 2, 196-207 (1994) ·Zbl 0809.05091 |
[12] | Fulton, W., Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., 65, 3, 381-420 (1992) ·Zbl 0788.14044 |
[13] | Humphreys, J. E., Reflection Groups and Coxeter Groups (1990), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0725.20028 |
[14] | A. Knutson, E. Miller, Gröbner geometry of Schubert polynomials, Ann. of Math. (2), 2003, to appear.; A. Knutson, E. Miller, Gröbner geometry of Schubert polynomials, Ann. of Math. (2), 2003, to appear. |
[15] | Lascoux, A.; Schützenberger, M.-P., Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C.R. Acad. Sci. Paris Sér. I Math., 295, 11, 629-633 (1982) ·Zbl 0542.14030 |
[16] | C. Lenart, S. Robinson, F. Sottile, Grothendieck polynomials via permutation patterns and chains in the Bruhat order, 2002, in preparation.; C. Lenart, S. Robinson, F. Sottile, Grothendieck polynomials via permutation patterns and chains in the Bruhat order, 2002, in preparation. ·Zbl 1149.14039 |
[17] | I.G. Macdonald, Notes on Schubert polynomials, Publications du LACIM, Universitè du Québec à Montréal, 1991.; I.G. Macdonald, Notes on Schubert polynomials, Publications du LACIM, Universitè du Québec à Montréal, 1991. ·Zbl 0784.05061 |
[18] | E. Miller, Resolutions and duality for monomial ideals, Ph.D. Thesis, University of California, Berkeley, 2000.; E. Miller, Resolutions and duality for monomial ideals, Ph.D. Thesis, University of California, Berkeley, 2000. |
[19] | E. Miller, D. Perkinson, in: A.V. Geramita, (Ed.), Eight Lectures on Monomial Ideals, COCOA VI: Proceedings of the International School, May-June, 1999. Queens Papers in Pure and Applied Mathematics, Vol. 120, 2001 pp. 3-105.; E. Miller, D. Perkinson, in: A.V. Geramita, (Ed.), Eight Lectures on Monomial Ideals, COCOA VI: Proceedings of the International School, May-June, 1999. Queens Papers in Pure and Applied Mathematics, Vol. 120, 2001 pp. 3-105. |
[20] | Ramanathan, A., Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math., 80, 2, 283-294 (1985) ·Zbl 0541.14039 |
[21] | R.P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 2nd Edition, Vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996.; R.P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 2nd Edition, Vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996. ·Zbl 0838.13008 |
[22] | Terai, N., Alexander duality theorem and Stanley-Reisner rings, Sūrikaisekikenkyūsho Kōkyūroku, 1078, 174-184 (1999), (Free resolutions of coordinate rings of projective varieties and related topics (Kyoto, 1998)) (Japanese) ·Zbl 0974.13019 |
[23] | Yanagawa, K., Alexander duality for Stanley-Reisner rings and squarefree \(N^n\)-graded modules, J. Algebra, 225, 630-645 (2000) ·Zbl 0981.13011 |