Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Subword complexes in Coxeter groups.(English)Zbl 1069.20026

One of the fundamental results in the theory of combinatorial-topological Coxeter groups is that Björner has shown that intervals in the weak Bruhat ordering are homotopy equivalent to balls or spheres. This work is analogous, or even sharper, where the authors demonstrate that the set of all subwords of an ordered list is homeomorphic to balls or spheres. The main result here depends on shellability of subword complexes. The authors raise some serious open questions at the end, and they might be answered soon. In brief, the article is a creative addition to the subject.

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
06A11 Algebraic aspects of posets
05E15 Combinatorial aspects of groups and algebras (MSC2010)
05E25 Group actions on posets, etc. (MSC2000)
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes

Cite

References:

[1]Bergeron, N.; Billey, S., RC-graphs and Schubert polynomials, Exp. Math., 2, 4, 257-269 (1993) ·Zbl 0803.05054
[2]I.N. Bernšteı̆n, I.M. Gel′fand, S.I. Gel′fand, Schubert cells, and the cohomology of the spaces G/P, Uspehi Mat. Nauk 28 (3(171)) (1973) 3-26.; I.N. Bernšteı̆n, I.M. Gel′fand, S.I. Gel′fand, Schubert cells, and the cohomology of the spaces G/P, Uspehi Mat. Nauk 28 (3(171)) (1973) 3-26. ·Zbl 0286.57025
[3]Billey, S. C.; Jockusch, W.; Stanley, R. P., Some combinatorial properties of Schubert polynomials, J. Algebraic Combin., 2, 4, 345-374 (1993) ·Zbl 0790.05093
[4]L.J. Billera, J.S. Provan, A decomposition property for simplicial complexes and its relation to diameters and shellings, Second International Conference on Combinatorial Mathematics New York, 1978, New York Acad. Science, New York, 1979, pp. 82-85.; L.J. Billera, J.S. Provan, A decomposition property for simplicial complexes and its relation to diameters and shellings, Second International Conference on Combinatorial Mathematics New York, 1978, New York Acad. Science, New York, 1979, pp. 82-85. ·Zbl 0484.52006
[5]A. Björner, Orderings of coxeter groups, Combinatorics and Algebra (Boulder, Co., 1983), American Mathematical Society, Providence, RI, 1984, pp. 175-195.; A. Björner, Orderings of coxeter groups, Combinatorics and Algebra (Boulder, Co., 1983), American Mathematical Society, Providence, RI, 1984, pp. 175-195. ·Zbl 0594.20029
[6]Björner, A.; Korte, B.; Lovász, L., Homotopy properties of greedoids, Adv. Appl. Math., 6, 4, 447-494 (1985) ·Zbl 0642.05014
[7]Björner, A.; Las Vergnas, M.; Sturmfels, B.; White, N.; Ziegler, G. M., Oriented matroids (1999), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0944.52006
[8]Björner, A.; Wachs, M., Bruhat order of Coxeter groups and shellability, Adv. in Math., 43, 1, 87-100 (1982) ·Zbl 0481.06002
[9]Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., (4)7, 53-88 (1974), (Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I) ·Zbl 0312.14009
[10]S. Fomin, A.N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183-190.; S. Fomin, A.N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183-190.
[11]Fomin, S.; Stanley, R. P., Schubert polynomials and the nil-Coxeter algebra, Adv. in Math., 103, 2, 196-207 (1994) ·Zbl 0809.05091
[12]Fulton, W., Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., 65, 3, 381-420 (1992) ·Zbl 0788.14044
[13]Humphreys, J. E., Reflection Groups and Coxeter Groups (1990), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0725.20028
[14]A. Knutson, E. Miller, Gröbner geometry of Schubert polynomials, Ann. of Math. (2), 2003, to appear.; A. Knutson, E. Miller, Gröbner geometry of Schubert polynomials, Ann. of Math. (2), 2003, to appear.
[15]Lascoux, A.; Schützenberger, M.-P., Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C.R. Acad. Sci. Paris Sér. I Math., 295, 11, 629-633 (1982) ·Zbl 0542.14030
[16]C. Lenart, S. Robinson, F. Sottile, Grothendieck polynomials via permutation patterns and chains in the Bruhat order, 2002, in preparation.; C. Lenart, S. Robinson, F. Sottile, Grothendieck polynomials via permutation patterns and chains in the Bruhat order, 2002, in preparation. ·Zbl 1149.14039
[17]I.G. Macdonald, Notes on Schubert polynomials, Publications du LACIM, Universitè du Québec à Montréal, 1991.; I.G. Macdonald, Notes on Schubert polynomials, Publications du LACIM, Universitè du Québec à Montréal, 1991. ·Zbl 0784.05061
[18]E. Miller, Resolutions and duality for monomial ideals, Ph.D. Thesis, University of California, Berkeley, 2000.; E. Miller, Resolutions and duality for monomial ideals, Ph.D. Thesis, University of California, Berkeley, 2000.
[19]E. Miller, D. Perkinson, in: A.V. Geramita, (Ed.), Eight Lectures on Monomial Ideals, COCOA VI: Proceedings of the International School, May-June, 1999. Queens Papers in Pure and Applied Mathematics, Vol. 120, 2001 pp. 3-105.; E. Miller, D. Perkinson, in: A.V. Geramita, (Ed.), Eight Lectures on Monomial Ideals, COCOA VI: Proceedings of the International School, May-June, 1999. Queens Papers in Pure and Applied Mathematics, Vol. 120, 2001 pp. 3-105.
[20]Ramanathan, A., Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math., 80, 2, 283-294 (1985) ·Zbl 0541.14039
[21]R.P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 2nd Edition, Vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996.; R.P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 2nd Edition, Vol. 41, Birkhäuser Boston Inc., Boston, MA, 1996. ·Zbl 0838.13008
[22]Terai, N., Alexander duality theorem and Stanley-Reisner rings, Sūrikaisekikenkyūsho Kōkyūroku, 1078, 174-184 (1999), (Free resolutions of coordinate rings of projective varieties and related topics (Kyoto, 1998)) (Japanese) ·Zbl 0974.13019
[23]Yanagawa, K., Alexander duality for Stanley-Reisner rings and squarefree \(N^n\)-graded modules, J. Algebra, 225, 630-645 (2000) ·Zbl 0981.13011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp