[1] | Ambrosio, L., Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. in Math., 159, 51-67 (2001) ·Zbl 1002.28004 ·doi:10.1006/aima.2000.1963 |
[2] | Ambrosio, L., Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, non smooth analysis and related topics, Set-Valued Anal., 10, 111-128 (2002) ·Zbl 1037.28002 ·doi:10.1023/A:1016548402502 |
[3] | Ambrosio, L., Fusco, N., and Pallara, D.Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Oxford University Press, (2000). ·Zbl 0957.49001 |
[4] | Ambrosio, L.; Kirchheim, B., Rectifiable sets in metric and Banach spaces, Math. Ann., 318, 527-555 (2000) ·Zbl 0966.28002 ·doi:10.1007/s002080000122 |
[5] | Ambrosio, L.; Kirchheim, B., Currents in metric spaces, Acta Math., 185, 1-80 (2000) ·Zbl 0984.49025 ·doi:10.1007/BF02392711 |
[6] | Ambrosio, L. and Magnani, V. Some fine properties ofBV functions on sub-Riemannian groups,Math. Z., to appear, (2002). |
[7] | Balogh, Z. Size of characteristic sets and functions with prescribed gradient, to appear onJ. Reine Angew. Math. ·Zbl 1051.53024 |
[8] | Balogh, Z., Rickly, M., and Serra Cassano, F. Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, to appear onPubl. Mat. ·Zbl 1060.28002 |
[9] | Bellaïche, A.; Bellaiche, A.; Risler, J., The tangent space in subriemannian geometry, Subriemannian Geometry (1996), Basel: Birkhäuser Verlag, Basel |
[10] | Biroli, M.; Mosco, U., Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX, Ser. Rend. Lincei, Mat. Appl., 6, 37-44 (1995) ·Zbl 0837.31006 |
[11] | Biroli, M.; Mosco, U.; Tchou, N., Homogenization by the Heisenberg group, Adv. Math. Sci. Appl., 7, 809-831 (1997) ·Zbl 0889.35009 |
[12] | Capogna, L.; Danielli, D.; Garofalo, N., The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom., 12, 203-215 (1994) ·Zbl 0864.46018 |
[13] | Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428-517 (1999) ·Zbl 0942.58018 ·doi:10.1007/s000390050094 |
[14] | Christ, M., A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61, 601-628 (1990) ·Zbl 0758.42009 |
[15] | Coulhon, T.; Saloff-Coste, L., Isopérimétrie pour les groupes et les variétés, Revista Mathematica Iberoamericana, 9, 293-314 (1993) ·Zbl 0782.53066 |
[16] | Danielli, D.; Garofalo, N.; Nhieu, D. M., Traces inequalities for Carnot-Carathèodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27, 4, 195-252 (1998) ·Zbl 0938.46036 |
[17] | David, G., Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup., 17, 4, 157-189 (1984) ·Zbl 0537.42016 |
[18] | David, G. and Semmes, S.Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure, Oxford University Press, (1997). ·Zbl 0887.54001 |
[19] | De Giorgi, E., Su una teoria generale della misura (r − l)-dimensionale in uno spazio adr dimensioni, Ann. Mat. Pura Appl., 36, 4, 191-213 (1954) ·Zbl 0055.28504 |
[20] | De Giorgi, E., Nuovi teoremi relativi aile misure (r − l)-dimensionali in uno spazio adr dimensioni, Ricerche Mat., 4, 95-113 (1955) ·Zbl 0066.29903 |
[21] | De Giorgi, E., Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena, 43, 285-292 (1995) ·Zbl 0862.49028 |
[22] | De Giorgi, E. Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata, manuscript, (1995). |
[23] | De Giorgi, E. Un progetto di teoria delie correnti, forme differenziali e varietà non orientate in spazi metrici, inVariational Methods, Non Linear Analysys and Differential Equations in Honour of J.P. Cecconi, (Genova 1993), Chicco, M., et al., Eds., ECIG, Genova, 67-71. |
[24] | Derridj, M., Sur un théorème de trace, Ann. Inst. Fourier (Grenoble), 22, 72-83 (1972) ·Zbl 0231.46076 |
[25] | Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (1992), Boca Raton: CRC Press, Boca Raton ·Zbl 0804.28001 |
[26] | Federer, H.Geometric Measure Theory, Springer, (1969). ·Zbl 0176.00801 |
[27] | Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 161-207 (1975) ·Zbl 0312.35026 ·doi:10.1007/BF02386204 |
[28] | Folland, G. B.; Stein, E. M., Hardy Spaces on Homogeneous Groups (1982), Princeton: Princeton University Press, Princeton ·Zbl 0508.42025 |
[29] | Franchi, B.; Serapioni, R.; Serra Cassano, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. of Math., 22, 4, 859-889 (1996) ·Zbl 0876.49014 |
[30] | Franchi, B.; Serapioni, R.; Serra Cassano, F., Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. (7), 11-B, 83-117 (1997) ·Zbl 0952.49010 |
[31] | Franchi, B.; Serapioni, R.; Serra Cassano, F., Sur les ensembles des périmètre fini dans le groupe de Heisenberg, C.R. Acad. Sci. Paris, Ser. I, Math., 329, 183-188 (1999) ·Zbl 1033.49045 |
[32] | Franchi, B.; Serapioni, R.; Serra Cassano, F., Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321, 479-531 (2001) ·Zbl 1057.49032 ·doi:10.1007/s002080100228 |
[33] | Franchi, B., Serapioni, R., and Serra Cassano, F. Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, to appear onComm. Anal. Geom. ·Zbl 1077.22008 |
[34] | Franchi, B.; Serapioni, R.; Serra Cassano, F., Rectifiability and perimeter in step 2 groups, Proceedings of EquadifflO, Prague Aug. 2001, Math. Bohemica, 127, 219-228 (2002) ·Zbl 1018.49029 |
[35] | Franchi, B.; Wheeden, R. L., Compensation couples and isoperimetric estimates for vector fields, Coll. Math., 74, 1-27 (1997) ·Zbl 0915.46028 |
[36] | Fremlin, D. H., Spaces of finite length, Proc. London Mathematical Society (3), 64, 449-486 (1992) ·Zbl 0724.54021 ·doi:10.1112/plms/s3-64.3.449 |
[37] | Garofalo, N.; Nhieu, D. M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49, 1081-1144 (1996) ·Zbl 0880.35032 ·doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A |
[38] | Garofalo, N.; Nhieu, D. M., Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74, 67-97 (1998) ·Zbl 0906.46026 ·doi:10.1007/BF02819446 |
[39] | Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), New York-Berlin-Heidelberg: Springer-Verlag, New York-Berlin-Heidelberg ·Zbl 0562.35001 |
[40] | Giusti, E., Minimal Surfaces and functions of Bounded Variation (1984), Basel: Birkhäuser, Basel ·Zbl 0545.49018 |
[41] | Gromov, M.; Bellaiche, A.; Risler, J., Carnot-Carathéodory spaces seen from within, Subriemannian Geometry (1996), Basel: Birkhäuser Verlag, Basel ·Zbl 0864.53025 |
[42] | Gromov, M., Metric structures for Riemannian and Non Riemannian Spaces (1999), Boston: Birkhäuser Verlag, Boston ·Zbl 0953.53002 |
[43] | Hajlasz, P. and Koskela, P. Sobolev met Poincaré,Memoirs of the American Mathematical Society,688, (2000). ·Zbl 0954.46022 |
[44] | Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander condition, Duke Math. J., 53, 503-523 (1986) ·Zbl 0614.35066 ·doi:10.1215/S0012-7094-86-05329-9 |
[45] | Heinonen, J., Calculus on Carnot groups, Ber. Univ. Jyväskylä Math. Inst., 68, 1-31 (1995) ·Zbl 0863.22009 |
[46] | Kirchheim, B., Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. AMS, 121, 113-123 (1994) ·Zbl 0806.28004 ·doi:10.2307/2160371 |
[47] | Korányi, A.; Reimann, H. M., Foundation for the theory of quasiconformal mappings on the Heisenberg group, Advances in Mathematics, 111, 1-87 (1995) ·Zbl 0876.30019 ·doi:10.1006/aima.1995.1017 |
[48] | Magnani, V., On a general coarea inequality and applications, Annales Academiae Scientiarum Fennicae, Mathematica, 27, 121-140 (2002) ·Zbl 1064.49034 |
[49] | Magnani, V. Characteristic set of C^1 surfaces, (G, ℝ^k)-rectifiability and applications, preprint of theScuola Normale Superiore, (2002). |
[50] | Mattila, P., Geometry of Sets and Measures in Euclidean Spaces (1995), Cambridge: Cambridge University Press, Cambridge ·Zbl 0819.28004 |
[51] | Mattila, P., Hausdorff m-regular and rectifiable sets in n-spaces, Trans. Am. Math. Soc, 205, 263-274 (1975) ·Zbl 0274.28004 ·doi:10.2307/1997203 |
[52] | Mauldin, R. D., Continua with σ-finite linear measure, Rend. Circ. Mat. Palermo, 2, 359-369 (1992) ·Zbl 0769.28006 |
[53] | Montgomery, R., A tour of Subriemannian geometries, their geodesies and applications, mathematical surveys and monographs (2002), Providence, RI: Amer. Math. Soc, Providence, RI ·Zbl 1044.53022 |
[54] | Mitchell, J., On Carnot-Carathèodory metrics, J. Differ. Geom., 21, 35-45 (1985) ·Zbl 0554.53023 |
[55] | Monti, R.; Serra Cassano, F., Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13, 339-376 (2001) ·Zbl 1032.49045 ·doi:10.1007/s005260000076 |
[56] | Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math., 129, 1-60 (1989) ·Zbl 0678.53042 ·doi:10.2307/1971484 |
[57] | Pansu, P., Une inégalité isopérimétrique sur le groupe de Heisenberg, C.R. Acad. Sci. Paris, 2951, 127-130 (1982) ·Zbl 0502.53039 |
[58] | Pansu, P. Geometrie du group d’Heisenberg, These pour le titre de Docteur 3ème cycle, Universite Paris VII, (1982). |
[59] | Pauls, S.D. A notion of rectifiability modelled on Carnot groups, Preliminary announcement, (2000). |
[60] | Sawyer, E.; Wheeden, R. L., Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Am. J. Math., 114, 813-874 (1992) ·Zbl 0783.42011 ·doi:10.2307/2374799 |
[61] | Strichartz, R., Self-similarity on nilpotent Lie groups, Geometric analysis, (Philadelphia, PA, 1991), Contemp. Math., 140, 123-157 (1992) ·Zbl 0797.43004 |
[62] | Preiss, D.; Tiser, J., On Besicovitch 1/2-problem, J. London Math. Soc, 45, 279-287 (1992) ·Zbl 0762.28003 ·doi:10.1112/jlms/s2-45.2.279 |
[63] | Semmes, S., On the non existence of bilipschitz parametrization and geometric problems about A_∞ weights, Revista Matematica Iberoamericana, 12, 337-410 (1996) ·Zbl 0858.46017 |
[64] | Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals (1993), Princeton: Princeton University Press, Princeton ·Zbl 0821.42001 |
[65] | Varopoulos, N. Th., Analysis on Lie groups, J. Funct. Anal., 76, 346-410 (1988) ·Zbl 0634.22008 ·doi:10.1016/0022-1236(88)90041-9 |
[66] | Varopoulos, N. Th.; Saloff-Coste, L.; Coulhon, T., Analysis and Geometry on Groups (1992), Cambridge: Cambridge University Press, Cambridge ·Zbl 0813.22003 |
[67] | Vodop’yanov, S. K., P-differentiability on Carnot groups in different topologies and related topics, Proc. on Analysis and Geometry, 603-670 (2000), Novosibirsk: Sobolev Institute Press, Novosibirsk ·Zbl 0992.58005 |
[68] | Ziemer, W. P., Weakly Differentiable Functions (1989), New York: Springer-Verlag, New York ·Zbl 0692.46022 |