Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the structure of finite perimeter sets in step 2 Carnot groups.(English)Zbl 1064.49033

Given a step 2 Carnot group \(G\), it is possible to define functions with bounded \(G\)-variation and sets of finite \(G\)-perimeter using the notion of intrinsic divergence. The main purpose of the authors is to investigate the structure properties of sets with finite perimeter. In order to do this, they give the notion of \(G\)-regular sets as level sets of functions regular with respect to the differentiable structure of \(G\). With a notion of intrinsic regular sets, it is possible to define \(G\)-rectifiability. Using this notion, the authors prove that the perimeter measure of a set \(E\) with finite \(G\)-perimeter is concentrated on a \(G\)-rectifiable set, the \(G\)-reduced boundary of \(E\). They prove also a representation formula for the perimeter measure and a divergence theorem, extending the classical De Giorgi results in this framework. The proof relies on a blow-up technique on points of reduced boundary, showing that the blow-up converges to a subgroup. This phenomenon fails to happen in Carnot groups with step greater then 2, as shown by the Engel group. In the last section, the authors prove also that codimension one Euclidean regular sets are \(G\)-rectifiable, but the converse is false as shown by a counterexample.

MSC:

49Q15 Geometric measure and integration theory, integral and normal currents in optimization
22E25 Nilpotent and solvable Lie groups
53C17 Sub-Riemannian geometry
49N60 Regularity of solutions in optimal control

Cite

References:

[1]Ambrosio, L., Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. in Math., 159, 51-67 (2001) ·Zbl 1002.28004 ·doi:10.1006/aima.2000.1963
[2]Ambrosio, L., Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, non smooth analysis and related topics, Set-Valued Anal., 10, 111-128 (2002) ·Zbl 1037.28002 ·doi:10.1023/A:1016548402502
[3]Ambrosio, L., Fusco, N., and Pallara, D.Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Oxford University Press, (2000). ·Zbl 0957.49001
[4]Ambrosio, L.; Kirchheim, B., Rectifiable sets in metric and Banach spaces, Math. Ann., 318, 527-555 (2000) ·Zbl 0966.28002 ·doi:10.1007/s002080000122
[5]Ambrosio, L.; Kirchheim, B., Currents in metric spaces, Acta Math., 185, 1-80 (2000) ·Zbl 0984.49025 ·doi:10.1007/BF02392711
[6]Ambrosio, L. and Magnani, V. Some fine properties ofBV functions on sub-Riemannian groups,Math. Z., to appear, (2002).
[7]Balogh, Z. Size of characteristic sets and functions with prescribed gradient, to appear onJ. Reine Angew. Math. ·Zbl 1051.53024
[8]Balogh, Z., Rickly, M., and Serra Cassano, F. Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, to appear onPubl. Mat. ·Zbl 1060.28002
[9]Bellaïche, A.; Bellaiche, A.; Risler, J., The tangent space in subriemannian geometry, Subriemannian Geometry (1996), Basel: Birkhäuser Verlag, Basel
[10]Biroli, M.; Mosco, U., Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX, Ser. Rend. Lincei, Mat. Appl., 6, 37-44 (1995) ·Zbl 0837.31006
[11]Biroli, M.; Mosco, U.; Tchou, N., Homogenization by the Heisenberg group, Adv. Math. Sci. Appl., 7, 809-831 (1997) ·Zbl 0889.35009
[12]Capogna, L.; Danielli, D.; Garofalo, N., The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom., 12, 203-215 (1994) ·Zbl 0864.46018
[13]Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428-517 (1999) ·Zbl 0942.58018 ·doi:10.1007/s000390050094
[14]Christ, M., A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61, 601-628 (1990) ·Zbl 0758.42009
[15]Coulhon, T.; Saloff-Coste, L., Isopérimétrie pour les groupes et les variétés, Revista Mathematica Iberoamericana, 9, 293-314 (1993) ·Zbl 0782.53066
[16]Danielli, D.; Garofalo, N.; Nhieu, D. M., Traces inequalities for Carnot-Carathèodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27, 4, 195-252 (1998) ·Zbl 0938.46036
[17]David, G., Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup., 17, 4, 157-189 (1984) ·Zbl 0537.42016
[18]David, G. and Semmes, S.Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure, Oxford University Press, (1997). ·Zbl 0887.54001
[19]De Giorgi, E., Su una teoria generale della misura (r − l)-dimensionale in uno spazio adr dimensioni, Ann. Mat. Pura Appl., 36, 4, 191-213 (1954) ·Zbl 0055.28504
[20]De Giorgi, E., Nuovi teoremi relativi aile misure (r − l)-dimensionali in uno spazio adr dimensioni, Ricerche Mat., 4, 95-113 (1955) ·Zbl 0066.29903
[21]De Giorgi, E., Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena, 43, 285-292 (1995) ·Zbl 0862.49028
[22]De Giorgi, E. Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata, manuscript, (1995).
[23]De Giorgi, E. Un progetto di teoria delie correnti, forme differenziali e varietà non orientate in spazi metrici, inVariational Methods, Non Linear Analysys and Differential Equations in Honour of J.P. Cecconi, (Genova 1993), Chicco, M., et al., Eds., ECIG, Genova, 67-71.
[24]Derridj, M., Sur un théorème de trace, Ann. Inst. Fourier (Grenoble), 22, 72-83 (1972) ·Zbl 0231.46076
[25]Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (1992), Boca Raton: CRC Press, Boca Raton ·Zbl 0804.28001
[26]Federer, H.Geometric Measure Theory, Springer, (1969). ·Zbl 0176.00801
[27]Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 161-207 (1975) ·Zbl 0312.35026 ·doi:10.1007/BF02386204
[28]Folland, G. B.; Stein, E. M., Hardy Spaces on Homogeneous Groups (1982), Princeton: Princeton University Press, Princeton ·Zbl 0508.42025
[29]Franchi, B.; Serapioni, R.; Serra Cassano, F., Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. of Math., 22, 4, 859-889 (1996) ·Zbl 0876.49014
[30]Franchi, B.; Serapioni, R.; Serra Cassano, F., Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. (7), 11-B, 83-117 (1997) ·Zbl 0952.49010
[31]Franchi, B.; Serapioni, R.; Serra Cassano, F., Sur les ensembles des périmètre fini dans le groupe de Heisenberg, C.R. Acad. Sci. Paris, Ser. I, Math., 329, 183-188 (1999) ·Zbl 1033.49045
[32]Franchi, B.; Serapioni, R.; Serra Cassano, F., Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321, 479-531 (2001) ·Zbl 1057.49032 ·doi:10.1007/s002080100228
[33]Franchi, B., Serapioni, R., and Serra Cassano, F. Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, to appear onComm. Anal. Geom. ·Zbl 1077.22008
[34]Franchi, B.; Serapioni, R.; Serra Cassano, F., Rectifiability and perimeter in step 2 groups, Proceedings of EquadifflO, Prague Aug. 2001, Math. Bohemica, 127, 219-228 (2002) ·Zbl 1018.49029
[35]Franchi, B.; Wheeden, R. L., Compensation couples and isoperimetric estimates for vector fields, Coll. Math., 74, 1-27 (1997) ·Zbl 0915.46028
[36]Fremlin, D. H., Spaces of finite length, Proc. London Mathematical Society (3), 64, 449-486 (1992) ·Zbl 0724.54021 ·doi:10.1112/plms/s3-64.3.449
[37]Garofalo, N.; Nhieu, D. M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49, 1081-1144 (1996) ·Zbl 0880.35032 ·doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
[38]Garofalo, N.; Nhieu, D. M., Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74, 67-97 (1998) ·Zbl 0906.46026 ·doi:10.1007/BF02819446
[39]Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), New York-Berlin-Heidelberg: Springer-Verlag, New York-Berlin-Heidelberg ·Zbl 0562.35001
[40]Giusti, E., Minimal Surfaces and functions of Bounded Variation (1984), Basel: Birkhäuser, Basel ·Zbl 0545.49018
[41]Gromov, M.; Bellaiche, A.; Risler, J., Carnot-Carathéodory spaces seen from within, Subriemannian Geometry (1996), Basel: Birkhäuser Verlag, Basel ·Zbl 0864.53025
[42]Gromov, M., Metric structures for Riemannian and Non Riemannian Spaces (1999), Boston: Birkhäuser Verlag, Boston ·Zbl 0953.53002
[43]Hajlasz, P. and Koskela, P. Sobolev met Poincaré,Memoirs of the American Mathematical Society,688, (2000). ·Zbl 0954.46022
[44]Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander condition, Duke Math. J., 53, 503-523 (1986) ·Zbl 0614.35066 ·doi:10.1215/S0012-7094-86-05329-9
[45]Heinonen, J., Calculus on Carnot groups, Ber. Univ. Jyväskylä Math. Inst., 68, 1-31 (1995) ·Zbl 0863.22009
[46]Kirchheim, B., Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. AMS, 121, 113-123 (1994) ·Zbl 0806.28004 ·doi:10.2307/2160371
[47]Korányi, A.; Reimann, H. M., Foundation for the theory of quasiconformal mappings on the Heisenberg group, Advances in Mathematics, 111, 1-87 (1995) ·Zbl 0876.30019 ·doi:10.1006/aima.1995.1017
[48]Magnani, V., On a general coarea inequality and applications, Annales Academiae Scientiarum Fennicae, Mathematica, 27, 121-140 (2002) ·Zbl 1064.49034
[49]Magnani, V. Characteristic set of C^1 surfaces, (G, ℝ^k)-rectifiability and applications, preprint of theScuola Normale Superiore, (2002).
[50]Mattila, P., Geometry of Sets and Measures in Euclidean Spaces (1995), Cambridge: Cambridge University Press, Cambridge ·Zbl 0819.28004
[51]Mattila, P., Hausdorff m-regular and rectifiable sets in n-spaces, Trans. Am. Math. Soc, 205, 263-274 (1975) ·Zbl 0274.28004 ·doi:10.2307/1997203
[52]Mauldin, R. D., Continua with σ-finite linear measure, Rend. Circ. Mat. Palermo, 2, 359-369 (1992) ·Zbl 0769.28006
[53]Montgomery, R., A tour of Subriemannian geometries, their geodesies and applications, mathematical surveys and monographs (2002), Providence, RI: Amer. Math. Soc, Providence, RI ·Zbl 1044.53022
[54]Mitchell, J., On Carnot-Carathèodory metrics, J. Differ. Geom., 21, 35-45 (1985) ·Zbl 0554.53023
[55]Monti, R.; Serra Cassano, F., Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13, 339-376 (2001) ·Zbl 1032.49045 ·doi:10.1007/s005260000076
[56]Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math., 129, 1-60 (1989) ·Zbl 0678.53042 ·doi:10.2307/1971484
[57]Pansu, P., Une inégalité isopérimétrique sur le groupe de Heisenberg, C.R. Acad. Sci. Paris, 2951, 127-130 (1982) ·Zbl 0502.53039
[58]Pansu, P. Geometrie du group d’Heisenberg, These pour le titre de Docteur 3ème cycle, Universite Paris VII, (1982).
[59]Pauls, S.D. A notion of rectifiability modelled on Carnot groups, Preliminary announcement, (2000).
[60]Sawyer, E.; Wheeden, R. L., Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Am. J. Math., 114, 813-874 (1992) ·Zbl 0783.42011 ·doi:10.2307/2374799
[61]Strichartz, R., Self-similarity on nilpotent Lie groups, Geometric analysis, (Philadelphia, PA, 1991), Contemp. Math., 140, 123-157 (1992) ·Zbl 0797.43004
[62]Preiss, D.; Tiser, J., On Besicovitch 1/2-problem, J. London Math. Soc, 45, 279-287 (1992) ·Zbl 0762.28003 ·doi:10.1112/jlms/s2-45.2.279
[63]Semmes, S., On the non existence of bilipschitz parametrization and geometric problems about A_∞ weights, Revista Matematica Iberoamericana, 12, 337-410 (1996) ·Zbl 0858.46017
[64]Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals (1993), Princeton: Princeton University Press, Princeton ·Zbl 0821.42001
[65]Varopoulos, N. Th., Analysis on Lie groups, J. Funct. Anal., 76, 346-410 (1988) ·Zbl 0634.22008 ·doi:10.1016/0022-1236(88)90041-9
[66]Varopoulos, N. Th.; Saloff-Coste, L.; Coulhon, T., Analysis and Geometry on Groups (1992), Cambridge: Cambridge University Press, Cambridge ·Zbl 0813.22003
[67]Vodop’yanov, S. K., P-differentiability on Carnot groups in different topologies and related topics, Proc. on Analysis and Geometry, 603-670 (2000), Novosibirsk: Sobolev Institute Press, Novosibirsk ·Zbl 0992.58005
[68]Ziemer, W. P., Weakly Differentiable Functions (1989), New York: Springer-Verlag, New York ·Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp