Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

\(K\)-amenability for amalgamated free products of amenable discrete quantum groups.(English)Zbl 1064.46064

Summary: The basic notions and results of equivariant KK-theory concerning crossed products can be extended to the case of locally compact quantum groups. We recall these constructions and prove some useful properties of subgroups and amalgamated free products of discrete quantum groups. Using these properties and a quantum analogue of the Bass-Serre tree, we establish the K-amenability of amalgamated free products of amenable discrete quantum groups.

MSC:

46L80 \(K\)-theory and operator algebras (including cyclic theory)
19K35 Kasparov theory (\(KK\)-theory)
20G42 Quantum groups (quantized function algebras) and their representations
58B32 Geometry of quantum groups

Cite

References:

[1]Avitzour, D., Free products of \(C^*\)-algebras, Trans. Amer. Math. Soc., 271, 423-465 (1982) ·Zbl 0513.46037
[2]Baaj, S., Représentation régulière du groupe quantique des déplacements de Woronowicz, Astérisque, 232, 11-48 (1995) ·Zbl 0840.46036
[3]Baaj, S.; Skandalis, G., \(C^*\)-algèbres de Hopf et théorie de Kasparov équivariante, \(K\)-Theory, 2, 683-721 (1989) ·Zbl 0683.46048
[4]Baaj, S.; Skandalis, G., Unitaires multiplicatifs et dualité pour les produits croisés de \(C^*\)-algèbres, Ann. Sci. ENS, 26, 425-488 (1993) ·Zbl 0804.46078
[5]Banica, T., Théorie des représentations du groupe quantique compact libre \(O(n)\), C. R. Acad. Sci. Paris, 322, 241-244 (1996) ·Zbl 0862.17010
[6]Banica, T., Symmetries of a generic coaction, Math. Ann., 314, 763-780 (1999) ·Zbl 0928.46038
[7]Cuntz, J., The \(K\)-groups for free products of \(C^*\)-algebras, Proc. Sympos. Pure Math., 38, 81-84 (1982) ·Zbl 0502.46050
[8]Cuntz, J., \(K\)-theoretic amenability for discrete groups, J. Reine Angew. Math., 344, 180-195 (1983) ·Zbl 0511.46066
[9]Germain, E.,KK-theory of reduced free-product \(C^*\)-algebras, Duke Math. J., 82, 707-723 (1996) ·Zbl 0863.46046
[10]E. Germain, Amalgamated free product \(C^* KK \); E. Germain, Amalgamated free product \(C^* KK \) ·Zbl 0889.19002
[11]Julg, P.; Valette, A., \(K\)-theoretic amenability for \(SL2(Qp)\) and the action on the associated tree, J. Funct. Anal., 58, 194-215 (1984) ·Zbl 0559.46030
[12]Kasparov, G. G.; Skandalis, G., Groups acting on buildings, operator \(K\)-theory, and Novikov’s conjecture, \(K\)-Theory, 4, 303-337 (1991) ·Zbl 0738.46035
[13]Kustermans, J.; Vaes, S., Locally compact quantum groups, Ann. Sci. ENS, 33, 837-934 (2000) ·Zbl 1034.46508
[14]Pimsner, M.,KK-groups of crossed products by groups acting on trees, Invent. Math., 86, 603-634 (1986) ·Zbl 0638.46049
[15]Pimsner, M.; Voiculescu, D., \(K\)-groups of reduced crossed products by free groups, J. Oper. Theory, 8, 131-156 (1982) ·Zbl 0533.46045
[16]Serre, J.-P., Arbres, amalgames, \( SL_2\), Astérisque, 46 (1977) ·Zbl 0302.20039
[17]van Daele, A.; Wang, S., Universal quantum groups, Internat. J. Math., 7, 255-263 (1996) ·Zbl 0870.17011
[18]R. Vergnioux,KK; R. Vergnioux,KK
[19]Voiculescu, D., Symmetries of some reduced free product \(C^*\)-algebras, Lecture Notes Math., 1132, 556-588 (1985) ·Zbl 0618.46048
[20]Voiculescu, D.; Dykema, K.; Nica, A., Free Random Variables (1992), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0795.46049
[21]Wang, S., Free products of compact quantum groups, Comm. Math. Phys., 167, 671-692 (1995) ·Zbl 0838.46057
[22]Woronowicz, S. L., Compact matrix pseudogroups, Comm. Math. Phys., 111, 613-665 (1987) ·Zbl 0627.58034
[23]Woronowicz, S. L., Tannaka-Krein duality for compact matrix pseudogroups, Twisted SU(n) groups, Invent. Math., 93, 35-76 (1988) ·Zbl 0664.58044
[24]Woronowicz, S. L., From multiplicative unitaries to quantum groups, Internat. J. Math., 7, 127-149 (1996) ·Zbl 0876.46044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp