Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Holomorphic disks and knot invariants.(English)Zbl 1062.57019

This article is one of a series of articles by the authors [Ann. Math. (2) 159, No. 3, 1027–1158 (2004;Zbl 1073.57009); Ann. Math. (2) 159, No.3, 1159-1245 (2004;Zbl 1081.57013) and Topology Appl. 141, No.1–3, 59–85 (2004;Zbl 1052.57012)] in which the authors develop a new invariant for a 3-manifold \(M\), namely the Heegaard-Floer homology groups \(\widehat {HF}(M)\) and \(HF^{\pm}(M)\). In the article under review the authors define closely related Floer-homologies for a null-homologous knot \(K\) in an oriented 3-manifold \(M\), denoted by \(\widehat {HFK}(M,K)\). These invariants are graded Abelian groups with a \(\mathbb{Z}\) or a \(1/2 +\mathbb{Z}\) grading. In the case of classical knot and links in \(S^3\) the invariant is related to the Alexander-Conway polynomial \(\Delta_K(t)\) of the knot \(K\) as follows: \[\sum_j \chi ( \widehat {HFK} (S^3,K,j,\mathbb{Q})) t^j = (t^{-1/2}-t^{1/2})^{n-1} \Delta_K(t),\] where \(n\) denotes the number of components in the link \(K\), \(\chi\) is the Euler characteristic and \(i\) is the filtration index. These new invariants are stronger than the Alexander-Conway polynomial since they do not vanish for split links where \(\Delta_K(t)=0\). These invariants also satisfy a skein exact sequence. Let \(K_0\), \(K_-\) and \(K_+\) be three knots/links which have projections that differ only at a single crossing (as usual in skein theory), then there is a long exact sequence between \(\widehat {HFK}\) for the three knots/links \(K_0\), \(K_-\) and \(K_+\). In the article the authors conjecture that Floer-homologies \(\widehat {HFK} (S^3,K)\) determine the genus of a knot. The authors prove this conjecture in Geom. Topol. 8, 311–334 (2004;Zbl 1056.57020)]. The article also contains some sample calculations for two bridge knots, a calculation for the 3-bridge knot \(9_{42}\), and calculations of \(HF^+\) for certain simple 3-manifolds obtained by surgeries on some special knots in \(S^3\).

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57R58 Floer homology

Cite

References:

[1]Akbulut, S.; McCarthy, J., Casson’s invariant for oriented homology 3-spheres—an exposition, Annals of Mathematics Studies, Vol. 36 (1990), Princeton University Press: Princeton University Press Princeton, NJ ·Zbl 0695.57011
[2]Bar-Natan, D., On Khovanov’s categorification of the Jones polynomial, Algebraic Geom. Topol., 2, 337-370 (2002) ·Zbl 0998.57016
[3]Bertram, A.; Thaddeus, M., On the quantum cohomology of a symmetric product of an algebraic curve, Duke Math. J., 108, 2, 329-362 (2001) ·Zbl 1050.14052
[4]Braam, P.; Donaldson, S. K., Floer’s work on instanton homology, knots, and surgery, (Hofer, H.; Taubes, C. H.; Weinstein, A.; Zehnder, E., The Floer Memorial. The Floer Memorial, Progress in Mathematics, Vol. 133 (1995), Birkhäuser: Birkhäuser Basel), 195-256 ·Zbl 0996.57516
[5]Eliashberg, Y. M.; Thurston, W. P., Confoliations, University Lecture Series, Vol. 13 (1998), American Mathematical Society: American Mathematical Society Providence RI ·Zbl 0893.53001
[6]Fintushel, R.; Stern, R. J., Knots, links, and 4-manifolds, Invent. Math., 134, 2, 363-400 (1998) ·Zbl 0914.57015
[7]A. Floer, Instanton homology, surgery, and knots, in: Geometry of Low-Dimensional Manifolds, 1 (Durham, 1989), London Mathematical Society, Lecture Note Series, Vol. 150, 1990, Cambridge University Press, Cambridge, pp. 97-114.; A. Floer, Instanton homology, surgery, and knots, in: Geometry of Low-Dimensional Manifolds, 1 (Durham, 1989), London Mathematical Society, Lecture Note Series, Vol. 150, 1990, Cambridge University Press, Cambridge, pp. 97-114. ·Zbl 0788.57008
[8]Gabai, D., Foliations and the topology of 3-manifolds, J. Differential Geom., 18, 3, 445-503 (1983) ·Zbl 0533.57013
[9]Gompf, R. E.; Stipsicz, A. I., 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, Vol. 20 (1999), American Mathematical Society: American Mathematical Society Privdence, RI ·Zbl 0933.57020
[10]Hoste, J., Sewn-up \(r\)-link exteriors, Pacific J. Math., 112, 2, 347-382 (1984) ·Zbl 0539.57004
[11]M. Hutchings, M. Sullivan, The periodic Floer homology of a Dehn twist, 2002. http://math.berkeley.edu/hutching/pub/index.htm; M. Hutchings, M. Sullivan, The periodic Floer homology of a Dehn twist, 2002. http://math.berkeley.edu/hutching/pub/index.htm ·Zbl 1089.57021
[12]Khovanov, M., A categorification of the Jones polynomial, Duke Math. J., 101, 359-426 (2000) ·Zbl 0960.57005
[13]Kronheimer, P. B.; Mrowka, T. S., Scalar curvature and the Thurston norm, Math. Res. Lett., 4, 6, 931-937 (1997) ·Zbl 0892.57011
[14]MacDonald, I. G., Symmetric products of an algebraic curve, Topology, 1, 319-343 (1962) ·Zbl 0121.38003
[15]Meng, G.; Taubes, C. H., SW=Milnor torsion, Math. Res. Lett., 3, 661-674 (1996) ·Zbl 0870.57018
[16]Morgan, J. W.; Szabó, Z.; Taubes, C. H., A product formula for Seiberg-Witten invariants and the generalized Thom conjecture, J. Differential Geom., 44, 706-788 (1996) ·Zbl 0974.53063
[17]V. Muñoz, B.-L. Wang, Seiberg-Witten-Floer homology of a surface times a circle, math.DG/9905050.; V. Muñoz, B.-L. Wang, Seiberg-Witten-Floer homology of a surface times a circle, math.DG/9905050.
[18]P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math., to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math., to appear.
[19]P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169.; P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169.
[20]P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math., 2001, to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math., 2001, to appear.
[21]P.S. Ozsváth, Z. Szabó, Heegaard Floer homologies and contact structures, math.SG/0210127, 2002.; P.S. Ozsváth, Z. Szabó, Heegaard Floer homologies and contact structures, math.SG/0210127, 2002.
[22]Ozsváth, P. S.; Szabó, Z., Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math., 173, 2, 179-261 (2003) ·Zbl 1025.57016
[23]Ozsváth, P. S.; Szabó, Z., Heegaard Floer homology and alternating knots, Geom. Topol., 7, 225-254 (2003) ·Zbl 1130.57303
[24]P.S. Ozsváth, Z. Szabó, Knot Floer homology, genus bounds, and mutation, math.GT/0303225, 2003.; P.S. Ozsváth, Z. Szabó, Knot Floer homology, genus bounds, and mutation, math.GT/0303225, 2003.
[25]Rasmussen, J. A., Floer homologies of surgeries on two-bridge knots, Algebr. Geom. Topol., 2, 757-789 (2002) ·Zbl 1013.57020
[26]J. Rasmussen, Floer homology and knot complements, Ph.D. Thesis, Harvard University, 2003.; J. Rasmussen, Floer homology and knot complements, Ph.D. Thesis, Harvard University, 2003.
[27]Seidel, P., The symplectic Floer homology of a Dehn twist, Math. Res. Lett., 3, 6, 829-834 (1996) ·Zbl 0876.57022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp