[1] | Akbulut, S.; McCarthy, J., Casson’s invariant for oriented homology 3-spheres—an exposition, Annals of Mathematics Studies, Vol. 36 (1990), Princeton University Press: Princeton University Press Princeton, NJ ·Zbl 0695.57011 |
[2] | Bar-Natan, D., On Khovanov’s categorification of the Jones polynomial, Algebraic Geom. Topol., 2, 337-370 (2002) ·Zbl 0998.57016 |
[3] | Bertram, A.; Thaddeus, M., On the quantum cohomology of a symmetric product of an algebraic curve, Duke Math. J., 108, 2, 329-362 (2001) ·Zbl 1050.14052 |
[4] | Braam, P.; Donaldson, S. K., Floer’s work on instanton homology, knots, and surgery, (Hofer, H.; Taubes, C. H.; Weinstein, A.; Zehnder, E., The Floer Memorial. The Floer Memorial, Progress in Mathematics, Vol. 133 (1995), Birkhäuser: Birkhäuser Basel), 195-256 ·Zbl 0996.57516 |
[5] | Eliashberg, Y. M.; Thurston, W. P., Confoliations, University Lecture Series, Vol. 13 (1998), American Mathematical Society: American Mathematical Society Providence RI ·Zbl 0893.53001 |
[6] | Fintushel, R.; Stern, R. J., Knots, links, and 4-manifolds, Invent. Math., 134, 2, 363-400 (1998) ·Zbl 0914.57015 |
[7] | A. Floer, Instanton homology, surgery, and knots, in: Geometry of Low-Dimensional Manifolds, 1 (Durham, 1989), London Mathematical Society, Lecture Note Series, Vol. 150, 1990, Cambridge University Press, Cambridge, pp. 97-114.; A. Floer, Instanton homology, surgery, and knots, in: Geometry of Low-Dimensional Manifolds, 1 (Durham, 1989), London Mathematical Society, Lecture Note Series, Vol. 150, 1990, Cambridge University Press, Cambridge, pp. 97-114. ·Zbl 0788.57008 |
[8] | Gabai, D., Foliations and the topology of 3-manifolds, J. Differential Geom., 18, 3, 445-503 (1983) ·Zbl 0533.57013 |
[9] | Gompf, R. E.; Stipsicz, A. I., 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, Vol. 20 (1999), American Mathematical Society: American Mathematical Society Privdence, RI ·Zbl 0933.57020 |
[10] | Hoste, J., Sewn-up \(r\)-link exteriors, Pacific J. Math., 112, 2, 347-382 (1984) ·Zbl 0539.57004 |
[11] | M. Hutchings, M. Sullivan, The periodic Floer homology of a Dehn twist, 2002. http://math.berkeley.edu/hutching/pub/index.htm; M. Hutchings, M. Sullivan, The periodic Floer homology of a Dehn twist, 2002. http://math.berkeley.edu/hutching/pub/index.htm ·Zbl 1089.57021 |
[12] | Khovanov, M., A categorification of the Jones polynomial, Duke Math. J., 101, 359-426 (2000) ·Zbl 0960.57005 |
[13] | Kronheimer, P. B.; Mrowka, T. S., Scalar curvature and the Thurston norm, Math. Res. Lett., 4, 6, 931-937 (1997) ·Zbl 0892.57011 |
[14] | MacDonald, I. G., Symmetric products of an algebraic curve, Topology, 1, 319-343 (1962) ·Zbl 0121.38003 |
[15] | Meng, G.; Taubes, C. H., SW=Milnor torsion, Math. Res. Lett., 3, 661-674 (1996) ·Zbl 0870.57018 |
[16] | Morgan, J. W.; Szabó, Z.; Taubes, C. H., A product formula for Seiberg-Witten invariants and the generalized Thom conjecture, J. Differential Geom., 44, 706-788 (1996) ·Zbl 0974.53063 |
[17] | V. Muñoz, B.-L. Wang, Seiberg-Witten-Floer homology of a surface times a circle, math.DG/9905050.; V. Muñoz, B.-L. Wang, Seiberg-Witten-Floer homology of a surface times a circle, math.DG/9905050. |
[18] | P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math., to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math., to appear. |
[19] | P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169.; P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169. |
[20] | P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math., 2001, to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math., 2001, to appear. |
[21] | P.S. Ozsváth, Z. Szabó, Heegaard Floer homologies and contact structures, math.SG/0210127, 2002.; P.S. Ozsváth, Z. Szabó, Heegaard Floer homologies and contact structures, math.SG/0210127, 2002. |
[22] | Ozsváth, P. S.; Szabó, Z., Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math., 173, 2, 179-261 (2003) ·Zbl 1025.57016 |
[23] | Ozsváth, P. S.; Szabó, Z., Heegaard Floer homology and alternating knots, Geom. Topol., 7, 225-254 (2003) ·Zbl 1130.57303 |
[24] | P.S. Ozsváth, Z. Szabó, Knot Floer homology, genus bounds, and mutation, math.GT/0303225, 2003.; P.S. Ozsváth, Z. Szabó, Knot Floer homology, genus bounds, and mutation, math.GT/0303225, 2003. |
[25] | Rasmussen, J. A., Floer homologies of surgeries on two-bridge knots, Algebr. Geom. Topol., 2, 757-789 (2002) ·Zbl 1013.57020 |
[26] | J. Rasmussen, Floer homology and knot complements, Ph.D. Thesis, Harvard University, 2003.; J. Rasmussen, Floer homology and knot complements, Ph.D. Thesis, Harvard University, 2003. |
[27] | Seidel, P., The symplectic Floer homology of a Dehn twist, Math. Res. Lett., 3, 6, 829-834 (1996) ·Zbl 0876.57022 |