Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes.(English)Zbl 1057.65071

Summary: Mimetic discretizations based on the support-operators methodology are derived for non-orthogonal locally refined quadrilateral meshes. The second-order convergence rate on non-smooth meshes is verified with numerical examples.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
80M20 Finite difference methods applied to problems in thermodynamics and heat transfer
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

AMG1R5

Cite

References:

[1]R.W. Anderson, R.B. Pember, N.S. Elliott, An arbitrary Lagrangian-Eulerian method with local structured adaptive mesh refinement for modeling shock hydrodynamics. AIAA paper 2002-0738; R.W. Anderson, R.B. Pember, N.S. Elliott, An arbitrary Lagrangian-Eulerian method with local structured adaptive mesh refinement for modeling shock hydrodynamics. AIAA paper 2002-0738
[2]Edwards, M., Elimination of adaptive grid interface errors in the discrete cell centered pressure equation, J. Comp. Phys., 126, 356-372 (1996) ·Zbl 0858.76062
[3]Ewing, R. E.; Lazarov, R. D.; Vassilevski, P. S., Local refinement techniques for elliptic problems on cell-centered grids I, error analysis, Math. Comp., 56, 437-461 (1991) ·Zbl 0724.65093
[4]Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, volume 15 (1991), Springer Verlag: Springer Verlag Berlin ·Zbl 0788.73002
[5]Hyman, J.; Morel, J.; Shashkov, M.; Steinberg, S., Mimetic finite difference methods for diffusion equations, Comp. Geosciences, 6, 3-4, 333-352 (2002) ·Zbl 1023.76033
[6]Morel, J.; Hall, M.; Shashkov, M., A local support-operators diffusion disretization scheme for hexahedral meshes, J. Comp. Phys., 170, 338-372 (2001) ·Zbl 0983.65096
[7]Morel, J.; Roberts, R.; Shashkov, M., A local support-operators diffusion disretization scheme for quadrilateral \(r-z\) meshes, J. Comp. Phys., 144, 17-51 (1998) ·Zbl 1395.76052
[8]Pember, R. B.; Bell, J. B., An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J. Comp. Phys., 120, 278-304 (1995) ·Zbl 0842.76056
[9]Quirk, J. J., A parallel adaptive grid algorithm for computational shock hydrodynamics, Appl. Numer. Math., 20, 427-453 (1993) ·Zbl 0856.65108
[10]Stüben, K., Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419-452 (1983) ·Zbl 0533.65064
[11]Verfürth, R., A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50, 67-83 (1994) ·Zbl 0811.65089
[12]Zeeuw, D. D.; Powell, K. G., An adaptively refined Cartesian mesh solver for the Euler equations, J. Comp. Phys., 104, 56-68 (1993) ·Zbl 0766.76066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp