Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic.(English)Zbl 1057.14026

In this short research notice, the author shows that two differently defined types of motivic cohomology groups for smooth schemes over any field are in fact isomorphic. On the one hand,E. M. Friedlander andA. Suslin recently gave a construction of a certain motivic cohomology theory that was directly related, through a spectral sequence, to the higher \(K\)-theory of Chow groups [Ann. Sci. Éc. Norm. Supér., IV. Sér. 35, No. 6, 773–875 (2002;Zbl 1047.14011)]. Another kind of motivic cohomology was introduced byA. Suslin and the author of the present note in order to approach the so-called Bloch-Kato conjecture [in: The arithmetic and geometry of algebraic cycles. Proceedings of the NATO Advanced Study Institute, Banff, Canada, Jun 7–19, 1998. Math. Phys. Sci. 548, 117–189 (2000;Zbl 1005.19001)]. The proof that these two kinds of motivic cohomology are equivalent, which is the main result of the present note, implies that the Suslin-Voevodsky motivic cohomology groups of a smooth scheme over any field are isomorphic to certain higher Chow groups. More precisely, there is a natural isomorphism \[H^{p,q}(X,\mathbb{Z})\cong CH^q(X, 2q- p),\] and the same identity holds for arbitrary coefficients on both sides.

MSC:

14F42 Motivic cohomology; motivic homotopy theory
14C15 (Equivariant) Chow groups and rings; motives
19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp