57R17 | Symplectic and contact topology in high or arbitrary dimension |
57R65 | Surgery and handlebodies |
53D40 | Symplectic aspects of Floer homology and cohomology |
58C10 | Holomorphic maps on manifolds |
[1] | F Bourgeois, A Morse-Bott approach to contact homology, PhD thesis (2002) |
[2] | F Bourgeois, Introduction to contact homology (2003) |
[3] | F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 ·Zbl 1131.53312 ·doi:10.2140/gt.2003.7.799 |
[4] | Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 ·Zbl 1029.57011 ·doi:10.1007/s002220200212 |
[5] | K Cieliebak, Y Eliashberg, H Hofer, Symplectic homology of Weinstein manifolds, preprint |
[6] | C Conley, E Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984) 207 ·Zbl 0559.58019 ·doi:10.1002/cpa.3160370204 |
[7] | Y Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989) 623 ·Zbl 0684.57012 ·doi:10.1007/BF01393840 |
[8] | Y Eliashberg, Topological characterization of Stein manifolds of dimension \(>2\), Internat. J. Math. 1 (1990) 29 ·Zbl 0699.58002 ·doi:10.1142/S0129167X90000034 |
[9] | Y Eliashberg, Symplectic geometry of plurisubharmonic functions, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ. (1997) 49 ·Zbl 0881.32010 |
[10] | Y Eliashberg, Invariants in contact topology (1998) 327 ·Zbl 0913.53010 |
[11] | Y Eliashberg, Symplectic topology in the nineties, Differential Geom. Appl. 9 (1998) 59 ·Zbl 0955.57024 ·doi:10.1016/S0926-2245(98)00018-7 |
[12] | Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 ·Zbl 0989.81114 |
[13] | H Geiges, Contact structures on \((n-1)\)-connected \((2n+1)\)-manifolds, Pacific J. Math. 161 (1993) 129 ·Zbl 0791.53039 ·doi:10.2140/pjm.1993.161.129 |
[14] | H Geiges, Applications of contact surgery, Topology 36 (1997) 1193 ·Zbl 0912.57019 ·doi:10.1016/S0040-9383(97)00004-9 |
[15] | E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. \((4)\) 27 (1994) 697 ·Zbl 0819.53018 |
[16] | J W Gray, Some global properties of contact structures, Ann. of Math. \((2)\) 69 (1959) 421 ·Zbl 0092.39301 ·doi:10.2307/1970192 |
[17] | M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 ·Zbl 0592.53025 ·doi:10.1007/BF01388806 |
[18] | H Hofer, K Wysocki, E Zehnder, A characterisation of the tight three-sphere, Duke Math. J. 81 (1995) ·Zbl 0861.57026 ·doi:10.1215/S0012-7094-95-08111-3 |
[19] | H Hofer, K Wysocki, E Zehnder, A characterization of the tight 3-sphere II, Comm. Pure Appl. Math. 52 (1999) 1139 ·Zbl 0954.57004 ·doi:10.1002/(SICI)1097-0312(199909)52:9<1139::AID-CPA5>3.0.CO;2-L |
[20] | H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 ·Zbl 0861.58018 |
[21] | H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381 ·Zbl 0924.58003 |
[22] | K Honda, On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309 ·Zbl 0980.57010 ·doi:10.2140/gt.2000.4.309 |
[23] | K Honda, On the classification of tight contact structures II, J. Differential Geom. 55 (2000) 83 ·Zbl 1038.57007 |
[24] | P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209 ·Zbl 0892.53015 ·doi:10.1007/s002220050183 |
[25] | R Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1 ·Zbl 0328.53024 ·doi:10.5802/aif.658 |
[26] | J Martinet, Formes de contact sur les variétés de dimension 3, Springer (1971) ·Zbl 0215.23003 |
[27] | D McDuff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998) ·Zbl 0844.58029 |
[28] | D McDuff, D Salamon, \(J\)-holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994) ·Zbl 0809.53002 |
[29] | J Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press (1963) ·Zbl 0108.10401 |
[30] | J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827 ·Zbl 0798.58018 ·doi:10.1016/0040-9383(93)90052-W |
[31] | D Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303 ·Zbl 0766.58023 ·doi:10.1002/cpa.3160451004 |
[32] | I Ustilovsky, Infinitely many contact structures on \(S^{4m+1}\), Internat. Math. Res. Notices (1999) 781 ·Zbl 1034.53080 ·doi:10.1155/S1073792899000392 |
[33] | I Ustilovsky, Contact homology and contact structures on \(S^{4m+1}\), PhD thesis (1999) ·Zbl 1034.53080 ·doi:10.1155/S1073792899000392 |
[34] | A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 ·Zbl 0737.57012 |