Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Cylindrical contact homology of subcritical Stein-fillable contact manifolds.(English)Zbl 1055.57036

We call a complex \(n\)-dimensional Stein domain subcritical if it admits a proper, strictly \(J\) (associated almost complex structure)-convex Morse function with finitely many critical points all having Morse index \(<n\). We call a contact manifold subcritical Stein-fillable if it is the boundary of some subcritical Stein domain with the induced contact structure. The contact homology of a contact manifold is defined by suitably counting punctured pseudoholomorphic spheres in its symplectization, which converge exponentially to “good” periodic Reeb orbits at punctures. In some cases, one can count only pseudoholomorphic cylinders, and thus define the cylindrical contact homology. In this paper, the author computes the cylindrical contact homology of subcritical Stein-fillable contact manifolds with vanishing first Chern class of the contact bundle. As a result, the contact homology of such a contact manifold recovers in a way the homology of the corresponding Stein domain.

MSC:

57R17 Symplectic and contact topology in high or arbitrary dimension
57R65 Surgery and handlebodies
53D40 Symplectic aspects of Floer homology and cohomology
58C10 Holomorphic maps on manifolds

Cite

References:

[1]F Bourgeois, A Morse-Bott approach to contact homology, PhD thesis (2002)
[2]F Bourgeois, Introduction to contact homology (2003)
[3]F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 ·Zbl 1131.53312 ·doi:10.2140/gt.2003.7.799
[4]Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 ·Zbl 1029.57011 ·doi:10.1007/s002220200212
[5]K Cieliebak, Y Eliashberg, H Hofer, Symplectic homology of Weinstein manifolds, preprint
[6]C Conley, E Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984) 207 ·Zbl 0559.58019 ·doi:10.1002/cpa.3160370204
[7]Y Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98 (1989) 623 ·Zbl 0684.57012 ·doi:10.1007/BF01393840
[8]Y Eliashberg, Topological characterization of Stein manifolds of dimension \(&gt;2\), Internat. J. Math. 1 (1990) 29 ·Zbl 0699.58002 ·doi:10.1142/S0129167X90000034
[9]Y Eliashberg, Symplectic geometry of plurisubharmonic functions, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ. (1997) 49 ·Zbl 0881.32010
[10]Y Eliashberg, Invariants in contact topology (1998) 327 ·Zbl 0913.53010
[11]Y Eliashberg, Symplectic topology in the nineties, Differential Geom. Appl. 9 (1998) 59 ·Zbl 0955.57024 ·doi:10.1016/S0926-2245(98)00018-7
[12]Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 ·Zbl 0989.81114
[13]H Geiges, Contact structures on \((n-1)\)-connected \((2n+1)\)-manifolds, Pacific J. Math. 161 (1993) 129 ·Zbl 0791.53039 ·doi:10.2140/pjm.1993.161.129
[14]H Geiges, Applications of contact surgery, Topology 36 (1997) 1193 ·Zbl 0912.57019 ·doi:10.1016/S0040-9383(97)00004-9
[15]E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. \((4)\) 27 (1994) 697 ·Zbl 0819.53018
[16]J W Gray, Some global properties of contact structures, Ann. of Math. \((2)\) 69 (1959) 421 ·Zbl 0092.39301 ·doi:10.2307/1970192
[17]M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 ·Zbl 0592.53025 ·doi:10.1007/BF01388806
[18]H Hofer, K Wysocki, E Zehnder, A characterisation of the tight three-sphere, Duke Math. J. 81 (1995) ·Zbl 0861.57026 ·doi:10.1215/S0012-7094-95-08111-3
[19]H Hofer, K Wysocki, E Zehnder, A characterization of the tight 3-sphere II, Comm. Pure Appl. Math. 52 (1999) 1139 ·Zbl 0954.57004 ·doi:10.1002/(SICI)1097-0312(199909)52:9<1139::AID-CPA5>3.0.CO;2-L
[20]H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 ·Zbl 0861.58018
[21]H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381 ·Zbl 0924.58003
[22]K Honda, On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309 ·Zbl 0980.57010 ·doi:10.2140/gt.2000.4.309
[23]K Honda, On the classification of tight contact structures II, J. Differential Geom. 55 (2000) 83 ·Zbl 1038.57007
[24]P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209 ·Zbl 0892.53015 ·doi:10.1007/s002220050183
[25]R Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1 ·Zbl 0328.53024 ·doi:10.5802/aif.658
[26]J Martinet, Formes de contact sur les variétés de dimension 3, Springer (1971) ·Zbl 0215.23003
[27]D McDuff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998) ·Zbl 0844.58029
[28]D McDuff, D Salamon, \(J\)-holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994) ·Zbl 0809.53002
[29]J Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press (1963) ·Zbl 0108.10401
[30]J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827 ·Zbl 0798.58018 ·doi:10.1016/0040-9383(93)90052-W
[31]D Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303 ·Zbl 0766.58023 ·doi:10.1002/cpa.3160451004
[32]I Ustilovsky, Infinitely many contact structures on \(S^{4m+1}\), Internat. Math. Res. Notices (1999) 781 ·Zbl 1034.53080 ·doi:10.1155/S1073792899000392
[33]I Ustilovsky, Contact homology and contact structures on \(S^{4m+1}\), PhD thesis (1999) ·Zbl 1034.53080 ·doi:10.1155/S1073792899000392
[34]A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 ·Zbl 0737.57012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp