Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Block triangular preconditioners for symmetric saddle-point problems.(English)Zbl 1053.65033

Author’s abstract: We study the spectral properties and the computational performance of a block triangular preconditioner for the solution of the general symmetric saddle-point problem. We provide estimates for the region containing both the nonreal and the real eigenvalues. Moreover, we show that an indefinite inner product can be employed to devise an efficient short-term recurrence Krylov subspace solver to be used with the analyzed preconditioner. Numerical experiments on a variety of application problems are also reported.

MSC:

65F35 Numerical computation of matrix norms, conditioning, scaling
65F10 Iterative numerical methods for linear systems

Software:

Matlab;HSL;QMRPACK

Cite

References:

[1]AEA Technology, Harwell Subroutine Library, Harwell Laboratory, Oxfordshire, December 1995; AEA Technology, Harwell Subroutine Library, Harwell Laboratory, Oxfordshire, December 1995
[2]Axelsson, O., Preconditioning of indefinite problems by regularization, SIAM J. Numer. Anal., 16, 58-69 (1979) ·Zbl 0416.65071
[3]Axelsson, O.; Barker, V. A., Finite Element Solution of Boundary Value Problems (1984), Academic Press: Academic Press Orlando, FL ·Zbl 0537.65072
[4]O. Axelsson, M. Neytcheva, Preconditioning methods for constrained optimization problems with applications for the linear elasticity equations, Tech. Rep., Department of Mathematics, University of Nijmegen, Nijmegen, 2003; O. Axelsson, M. Neytcheva, Preconditioning methods for constrained optimization problems with applications for the linear elasticity equations, Tech. Rep., Department of Mathematics, University of Nijmegen, Nijmegen, 2003 ·Zbl 1071.65527
[5]Axelsson, O.; Neytcheva, M., Preconditioning methods for linear systems arising in constrained optimization problems, Numer. Linear Algebra Appl., 10, 3-31 (2003) ·Zbl 1071.65527
[6]D. Boffi, L. Gastaldi, Analysis of finite element approximation of evolution problems in mixed form, Tech. Rep. 1286, IAN-CNR, 2002; D. Boffi, L. Gastaldi, Analysis of finite element approximation of evolution problems in mixed form, Tech. Rep. 1286, IAN-CNR, 2002 ·Zbl 1080.65089
[7]Bramble, J. H.; Pasciak, J. E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp., 50, 1-17 (1988) ·Zbl 0643.65017
[8]Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer New York ·Zbl 0788.73002
[9]E. Chow, Y. Saad, Private communication, 1998; E. Chow, Y. Saad, Private communication, 1998
[10]Durazzi, C.; Ruggiero, V., Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems, Numer. Linear Algebra Appl., 10, 8, 673-688 (2003) ·Zbl 1071.65512
[11]Elman, H., Multigrid and Krylov subspace methods for the discrete Stokes equations, Internat. J. Numer. Methods Fluids, 22, 755-770 (1996) ·Zbl 0865.76078
[12]Elman, H.; Silvester, D.; Wathen, A., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 665-688 (2002) ·Zbl 1143.76531
[13]Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers (2003), Oxford University Press: Oxford University Press Oxford
[14]Fischer, B.; Ramage, A.; Silvester, D. J.; Wathen, A. J., Minimum residual methods for augmented systems, BIT, 38, 527-543 (1998) ·Zbl 0914.65026
[15]D.R. Fokkema, Subspace Methods for Linear, Nonlinear, and Eigen Problems, Ph.D. Thesis, Utrecht University, Utrecht, 1996; D.R. Fokkema, Subspace Methods for Linear, Nonlinear, and Eigen Problems, Ph.D. Thesis, Utrecht University, Utrecht, 1996
[16]Freund, R. W., Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations, (Braess, D.; Schumaker, L. L., Numerical Methods in Approximation Theory, vol. 9 (1992), Birkhäuser: Birkhäuser Basel), 77-95 ·Zbl 0814.65035
[17]Freund, R. W.; Nachtigal, N. M., Software for simplified Lanczos and QMR algorithms, Appl. Numer. Math., 19, 319-341 (1995) ·Zbl 0853.65041
[18]Golub, G. H.; Wathen, A. J., An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput., 19, 530-539 (1998) ·Zbl 0912.76053
[19]Johnson, C.; Thomée, V., Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15, 41-78 (1981) ·Zbl 0476.65074
[20]Klawonn, A., Block-triangular preconditioners for saddle-point problems with a penalty term, SIAM J. Sci. Comput., 19, 172-184 (1998) ·Zbl 0917.73069
[21]Klawonn, A., An optimal preconditioner for a class of saddle point problems with a penalty term, SIAM J. Sci. Comput., 19, 540-552 (1998) ·Zbl 0912.65018
[22]Klawonn, A.; Starke, G., Block triangular preconditioners for nonsymmetric saddle point problems: Field-of-values analysis, Numer. Math., 81, 577-594 (1999) ·Zbl 0922.65021
[23]Krzyzanowski, P., On block preconditioners for nonsymmetric saddle point problems, SIAM J. Sci. Comput., 23, 157-169 (2001) ·Zbl 0998.65048
[24]The MathWorks, Inc., MATLAB User’s Guide, Natick, MA 01760, May 2001; The MathWorks, Inc., MATLAB User’s Guide, Natick, MA 01760, May 2001
[25]Murphy, M. F.; Golub, G. H.; Wathen, A. J., A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21, 1969-1972 (2000) ·Zbl 0959.65063
[26]Perugia, I.; Simoncini, V., Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations, Numer. Linear Algebra Appl., 7, 585-616 (2000) ·Zbl 1051.65038
[27]Rusten, T.; Winther, R., A preconditioned iterative method for saddle point problems, SIAM J. Matrix Anal. Appl., 13, 887-904 (1992) ·Zbl 0760.65033
[28]Saad, Y., Iterative Methods for Sparse Linear Systems (1996), The PWS Publishing Company: The PWS Publishing Company Boston, MA ·Zbl 1002.65042
[29]Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 856-869 (1986) ·Zbl 0599.65018
[30]Silvester, D.; Wathen, A., Fast iterative solution of stabilized Stokes systems, Part II: Using general block preconditioners, SIAM J. Numer. Anal., 31, 1352-1367 (1994) ·Zbl 0810.76044
[31]Sleijpen, G. L.G.; Fokkema, D. R., Bicgstab(L) for linear equations involving unsymmetric matrices with complex spectrum, ETNA Electronic Trans. Numer. Anal., 1, 11-32 (1993) ·Zbl 0820.65016
[32]Wathen, A.; Fischer, B.; Silvester, D., The convergence rate of the minimal residual method for the Stokes problem, Numer. Math., 71, 121-134 (1995) ·Zbl 0837.65026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp