Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The Minkowski problem for polytopes.(English)Zbl 1053.52015

The Minkowski problem for polytopes concerns the existence and uniqueness, up to translations, of a convex polytope with given normal vectors and areas of its facets. The classical approach first settles the existence by solving an extremal problem and then establishes the essential uniqueness by employing a fundamental result of the Brunn-Minkowski theory of mixed volumes, namely Minkowski’s first inequality and its equality condition.
In the present paper, the author gives a proof by induction with respect to the dimension which yields simultaneously the solution of the Minkowski problem and the Minkowski inequality with equality condition (for polytopes).

MSC:

52B11 \(n\)-dimensional polytopes
52A40 Inequalities and extremum problems involving convexity in convex geometry
52A39 Mixed volumes and related topics in convex geometry

Cite

References:

[1]Bonnesen, T.; Fenchel, W., Theorie der Konvexen Körper (1948), Chelsea: Chelsea New York, USA ·Zbl 0008.07708
[2]Borell, C., Capacitary inequalities of the Brunn-Minkowski type, Math. Ann., 263, 179-184 (1983) ·Zbl 0546.31001
[3]Brascamp, H.; Lieb, E., On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., 22, 366-389 (1976) ·Zbl 0334.26009
[4]Burago, Y.; Zalgaller, V., Geometric Inequalities (1988), Springer: Springer Berlin ·Zbl 0633.53002
[5]Caffarelli, L.; Jerison, D.; Lieb, E., On the case of equality in the Brunn-Minkowski inequality for capacity, Adv. Math., 117, 193-207 (1996) ·Zbl 0847.31005
[6]Gardner, R. J., Geometric Tomography (1995), Cambridge University Press: Cambridge University Press New York ·Zbl 0864.52001
[7]Groemer, H., Geometric Applications of Fourier Series and Spherical Harmonics (1996), Cambridge University Press: Cambridge University Press New York ·Zbl 0877.52002
[8]Jerison, D., A Minkowski problem for electrostatic capacity, Acta Math., 176, 1-47 (1996) ·Zbl 0880.35041
[9]D. Klain, The Brunn-Minkowski inequality in the plane, preprint, 2002.; D. Klain, The Brunn-Minkowski inequality in the plane, preprint, 2002.
[10]Lutwak, E., The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geometry, 38, 131-150 (1993) ·Zbl 0788.52007
[11]Lutwak, E.; Oliker, V., On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geometry, 41, 227-246 (1995) ·Zbl 0867.52003
[12]Lorentz, G.; Golitschek, M.v.; Makovoz, Y., Constructive Approximation, Advanced Problems (1996), Springer: Springer Berlin ·Zbl 0910.41001
[13]Rogers, C. A., Sections and projections of convex bodies, Portugal. Math., 24, 99-103 (1965) ·Zbl 0137.15401
[14]Santaló, L. A., Integral Geometry and Geometric Probability (1976), Addison-Wesley: Addison-Wesley Reading, MA ·Zbl 0063.06708
[15]Schneider, R., Convex Bodies: The Brunn-Minkowski Theory (1993), Cambridge University Press: Cambridge University Press New York ·Zbl 0798.52001
[16]Schneider, R., Convex surfaces, curvature and surface area measures, (Gruber, P.; Wills, J. M., Handbook of Convex Geometry (1993), North-Holland: North-Holland Amsterdam), 273-299 ·Zbl 0817.52003
[17]Thompson, A. C., Minkowski Geometry (1996), Cambridge University Press: Cambridge University Press New York ·Zbl 0868.52001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp