Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Quantum \(K\)-theory. I: Foundations.(English)Zbl 1051.14064

The author studies the foundations of quantum \(K\)-theory, a \(K\)-theoretic version of quantum cohomology theory, giving a deformation of the ordinary \(K\)-ring \(K(X)\) of a smooth projective variety \(X\), analogous to the relation between quantum cohomology and ordinary cohomology. As a result, he develops a new class of Frobenius manifolds, and answers an open question ofA. Bayer andY. I. Manin [http://arxiv.org/abs/math.AG/0103164].

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
19E08 \(K\)-theory of schemes
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
55N15 Topological \(K\)-theory

Cite

References:

[1]P. Berthelot, A. Grothendieck, and L. Illusie, Théorie des intersections et théorème de Riemann-Roch , Séminaire de Geometrie Algébrique du Bois-Marie (SGA6), Lecture Notes in Math. 225 , Springer, Berlin, 1971. ·Zbl 0218.14001
[2]P. Baum, W. Fulton, and R. MacPherson, Riemann-Roch and topological \(K\) theory for singular varieties , Acta Math. 143 (1979), 155–192. ·Zbl 0474.14004 ·doi:10.1007/BF02392091
[3]A. Bayer and Yu. Manin, (Semi)simple exercises in quantum cohomology , ·Zbl 1077.14082
[4]K. Behrend, Gromov-Witten invariants in algebraic geometry , Invent. Math. 127 (1997), 601–617. ·Zbl 0909.14007 ·doi:10.1007/s002220050132
[5]K. Behrend and B. Fantechi, The intrinsic normal cone , Invent. Math. 128 (1997), 45–88. ·Zbl 0909.14006 ·doi:10.1007/s002220050136
[6]K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants , Duke Math. J. 85 (1996), 1–60. ·Zbl 0872.14019 ·doi:10.1215/S0012-7094-96-08501-4
[7]W. Fulton, Intersection Theory , 2nd ed., Ergeb. Math. Grenzgeb. (3) 2 , Springer, Berlin, 1998. ·Zbl 0541.14005
[8]W. Fulton and S. Lang, Riemann-Roch Algebra , Grundlehren Math. Wiss. 277 , Springer, New York, 1985. ·Zbl 0579.14011
[9]W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces , Mem. Amer. Math. Soc. 31 (1981), no. 243. ·Zbl 0467.55005
[10]W. Fulton and R. Pandharipande, ”Notes on stable maps and quantum cohomology” in Algebraic Geometry (Santa Cruz, Calif., 1995) , Proc. Sympos. Pure. Math. 62 , Part 2, Amer. Math. Soc., Providence, 1997, 45–96. ·Zbl 0898.14018
[11]A. Givental, Equivariant Gromov-Witten invariants , Internat. Math. Res. Notices 1996 , no. 13, 613–663. ·Zbl 0881.55006 ·doi:10.1155/S1073792896000414
[12]–. –. –. –., On the WDVV equation in quantum \(K\)-theory , Michigan Math. J. 48 (2000), 295–304. ·Zbl 1081.14523 ·doi:10.1307/mmj/1030132720
[13]A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices , Comm. Math. Phys. 168 (1995), 609–641. ·Zbl 0828.55004 ·doi:10.1007/BF02101846
[14]A. Givental and Y.-P. Lee, Quantum \(K\)-theory on flag manifolds, finite-difference Toda lattices and quantum groups , Invent. Math. 151 (2003), 193–219. ·Zbl 1051.14063 ·doi:10.1007/s00222-002-0250-y
[15]T. Graber and R. Pandharipande, Localization of virtual classes , Invent. Math. 135 (1999), 487–518. ·Zbl 0953.14035 ·doi:10.1007/s002220050293
[16]B. Kim, Quantum cohomology of flag manifolds \(G/B\) and quantum Toda lattices , Ann. of Math. (2) 149 (1999), 129–148. JSTOR: ·Zbl 1054.14533 ·doi:10.2307/121021
[17]M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function , Comm. Math. Phys. 147 (1992), 1–23. ·Zbl 0756.35081 ·doi:10.1007/BF02099526
[18]–. –. –. –., ”Enumeration of rational curves via torus actions” in The Moduli Space of Curves (Texel Island, Netherlands, 1994) , Progr. Math. 129 , Birkhäuser, Boston, 1995, 335–368.
[19]M. Kontsevich and Yu. Manin, Gromov-Witten Classes, quantum cohomology, and enumerative geometry , Comm. Math. Phys. 164 (1994), 525–562. ·Zbl 0853.14020 ·doi:10.1007/BF02101490
[20]A. Kresch, Canonical rational equivalence of intersections of divisors , Invent. Math. 136 (1999), 483–496. ·Zbl 0923.14003 ·doi:10.1007/s002220050317
[21]Y.-P. Lee, A Formula for Euler characteristics of tautological line bundles on the Deligne-Mumford moduli spaces , Internat. Math. Res. Notices 1997 , no. 8, 393–400. ·Zbl 0949.14016 ·doi:10.1155/S1073792897000263
[22]——–, Orbifold Euler characteristics of universal cotangent line bundles on \(\overlineM_1,n\) , preprint, 2003,
[23]——–, Quantum \(K\)-theory, II: Computations and open problems , in preparation.
[24]Y.-P. Lee and R. Pandharipande, A reconstruction theorem in quantum cohomology and quantum \(K\)-theory , ·Zbl 1080.14065 ·doi:10.1353/ajm.2004.0049
[25]J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties , J. Amer. Math. Soc. 11 (1998), 119–174. JSTOR: ·Zbl 0912.14004 ·doi:10.1090/S0894-0347-98-00250-1
[26]Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces , Amer. Math. Soc. Colloq. Publ. 47 , Amer. Math. Soc., Providence, 1999. ·Zbl 0952.14032
[27]J. Morava, ”Quantum generalized cohomology” in Operads: Proceedings of Renaissance Conferences (Hartford, Conn./Luminy, France, 1995) , Contemp. Math. 202 , Amer. Math. Soc., Providence, 1997, 407–419. ·Zbl 1004.55002
[28]E. Witten, ”Two-dimensional gravity and intersection theory on moduli space” in Surveys in Differential Geometry (Cambridge, Mass., 1990) , Amer. Math. Soc., Providence, 1991, 243–310. ·Zbl 0757.53049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp