14N35 | Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) |
19E08 | \(K\)-theory of schemes |
53D45 | Gromov-Witten invariants, quantum cohomology, Frobenius manifolds |
55N15 | Topological \(K\)-theory |
[1] | P. Berthelot, A. Grothendieck, and L. Illusie, Théorie des intersections et théorème de Riemann-Roch , Séminaire de Geometrie Algébrique du Bois-Marie (SGA6), Lecture Notes in Math. 225 , Springer, Berlin, 1971. ·Zbl 0218.14001 |
[2] | P. Baum, W. Fulton, and R. MacPherson, Riemann-Roch and topological \(K\) theory for singular varieties , Acta Math. 143 (1979), 155–192. ·Zbl 0474.14004 ·doi:10.1007/BF02392091 |
[3] | A. Bayer and Yu. Manin, (Semi)simple exercises in quantum cohomology , ·Zbl 1077.14082 |
[4] | K. Behrend, Gromov-Witten invariants in algebraic geometry , Invent. Math. 127 (1997), 601–617. ·Zbl 0909.14007 ·doi:10.1007/s002220050132 |
[5] | K. Behrend and B. Fantechi, The intrinsic normal cone , Invent. Math. 128 (1997), 45–88. ·Zbl 0909.14006 ·doi:10.1007/s002220050136 |
[6] | K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants , Duke Math. J. 85 (1996), 1–60. ·Zbl 0872.14019 ·doi:10.1215/S0012-7094-96-08501-4 |
[7] | W. Fulton, Intersection Theory , 2nd ed., Ergeb. Math. Grenzgeb. (3) 2 , Springer, Berlin, 1998. ·Zbl 0541.14005 |
[8] | W. Fulton and S. Lang, Riemann-Roch Algebra , Grundlehren Math. Wiss. 277 , Springer, New York, 1985. ·Zbl 0579.14011 |
[9] | W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces , Mem. Amer. Math. Soc. 31 (1981), no. 243. ·Zbl 0467.55005 |
[10] | W. Fulton and R. Pandharipande, ”Notes on stable maps and quantum cohomology” in Algebraic Geometry (Santa Cruz, Calif., 1995) , Proc. Sympos. Pure. Math. 62 , Part 2, Amer. Math. Soc., Providence, 1997, 45–96. ·Zbl 0898.14018 |
[11] | A. Givental, Equivariant Gromov-Witten invariants , Internat. Math. Res. Notices 1996 , no. 13, 613–663. ·Zbl 0881.55006 ·doi:10.1155/S1073792896000414 |
[12] | –. –. –. –., On the WDVV equation in quantum \(K\)-theory , Michigan Math. J. 48 (2000), 295–304. ·Zbl 1081.14523 ·doi:10.1307/mmj/1030132720 |
[13] | A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices , Comm. Math. Phys. 168 (1995), 609–641. ·Zbl 0828.55004 ·doi:10.1007/BF02101846 |
[14] | A. Givental and Y.-P. Lee, Quantum \(K\)-theory on flag manifolds, finite-difference Toda lattices and quantum groups , Invent. Math. 151 (2003), 193–219. ·Zbl 1051.14063 ·doi:10.1007/s00222-002-0250-y |
[15] | T. Graber and R. Pandharipande, Localization of virtual classes , Invent. Math. 135 (1999), 487–518. ·Zbl 0953.14035 ·doi:10.1007/s002220050293 |
[16] | B. Kim, Quantum cohomology of flag manifolds \(G/B\) and quantum Toda lattices , Ann. of Math. (2) 149 (1999), 129–148. JSTOR: ·Zbl 1054.14533 ·doi:10.2307/121021 |
[17] | M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function , Comm. Math. Phys. 147 (1992), 1–23. ·Zbl 0756.35081 ·doi:10.1007/BF02099526 |
[18] | –. –. –. –., ”Enumeration of rational curves via torus actions” in The Moduli Space of Curves (Texel Island, Netherlands, 1994) , Progr. Math. 129 , Birkhäuser, Boston, 1995, 335–368. |
[19] | M. Kontsevich and Yu. Manin, Gromov-Witten Classes, quantum cohomology, and enumerative geometry , Comm. Math. Phys. 164 (1994), 525–562. ·Zbl 0853.14020 ·doi:10.1007/BF02101490 |
[20] | A. Kresch, Canonical rational equivalence of intersections of divisors , Invent. Math. 136 (1999), 483–496. ·Zbl 0923.14003 ·doi:10.1007/s002220050317 |
[21] | Y.-P. Lee, A Formula for Euler characteristics of tautological line bundles on the Deligne-Mumford moduli spaces , Internat. Math. Res. Notices 1997 , no. 8, 393–400. ·Zbl 0949.14016 ·doi:10.1155/S1073792897000263 |
[22] | ——–, Orbifold Euler characteristics of universal cotangent line bundles on \(\overlineM_1,n\) , preprint, 2003, |
[23] | ——–, Quantum \(K\)-theory, II: Computations and open problems , in preparation. |
[24] | Y.-P. Lee and R. Pandharipande, A reconstruction theorem in quantum cohomology and quantum \(K\)-theory , ·Zbl 1080.14065 ·doi:10.1353/ajm.2004.0049 |
[25] | J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties , J. Amer. Math. Soc. 11 (1998), 119–174. JSTOR: ·Zbl 0912.14004 ·doi:10.1090/S0894-0347-98-00250-1 |
[26] | Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces , Amer. Math. Soc. Colloq. Publ. 47 , Amer. Math. Soc., Providence, 1999. ·Zbl 0952.14032 |
[27] | J. Morava, ”Quantum generalized cohomology” in Operads: Proceedings of Renaissance Conferences (Hartford, Conn./Luminy, France, 1995) , Contemp. Math. 202 , Amer. Math. Soc., Providence, 1997, 407–419. ·Zbl 1004.55002 |
[28] | E. Witten, ”Two-dimensional gravity and intersection theory on moduli space” in Surveys in Differential Geometry (Cambridge, Mass., 1990) , Amer. Math. Soc., Providence, 1991, 243–310. ·Zbl 0757.53049 |