Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Derived equivalences for tame weakly symmetric algebras having only periodic modules.(English)Zbl 1050.16010

Let \(K\) be an algebraically closed field. One of the main results of the paper is a classification, up to derived equivalence, of weakly symmetric finite-dimensional \(K\)-algebras \(A\) that have tame representation type, admit simply connected Galois coverings and all of whose indecomposable modules of finite dimension are periodic. A set of pairwise nonisomorphic representatives of the derived equivalence classes of these algebras is presented.

MSC:

16G60 Representation type (finite, tame, wild, etc.) of associative algebras
18E30 Derived categories, triangulated categories (MSC2010)
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers

Cite

References:

[1]Białkowski, J.; Skowroński, A., Selfinjective algebras of tubular type, Colloq. Math., 94, 175-194 (2002) ·Zbl 1023.16015
[2]J. Białkowski, A. Skowroński, On tame weakly symmetric algebras having only periodic modules, Arch. Math., in press; J. Białkowski, A. Skowroński, On tame weakly symmetric algebras having only periodic modules, Arch. Math., in press ·Zbl 1063.16020
[3]Drozd, Yu. A., Tame and wild matrix problems, (Representation Theory II. Representation Theory II, Lecture Notes in Math., 832 (1980), Springer), 242-258 ·Zbl 0454.16014
[4]Erdmann, K., Algebras and quaternion defect groups I, Math. Ann., 281, 545-560 (1988) ·Zbl 0655.16011
[5]Erdmann, K., Algebras and quaternion defect groups II, Math. Ann., 281, 561-582 (1988) ·Zbl 0655.16011
[6]Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 339-389 (1987) ·Zbl 0626.16008
[7]Happel, D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser., 119 (1988), Cambridge University Press ·Zbl 0635.16017
[8]Happel, D.; Ringel, C. M., The derived category of a tubular algebra, (Representation Theory I, Finite Dimensional Algebras. Representation Theory I, Finite Dimensional Algebras, Lecture Notes in Math., 1177 (1986), Springer), 156-180 ·Zbl 0626.16011
[9]Happel, D.; Vossieck, D., Minimal algebras of infinite representation type with preprojective component, Manuscripta Math., 42, 221-243 (1983) ·Zbl 0516.16023
[10]Holm, T., Derived equivalent tame blocks, J. Algebra, 194, 178-200 (1997) ·Zbl 0878.20007
[11]Holm, T., Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type, J. Algebra, 211, 159-205 (1999) ·Zbl 0932.16009
[12]Krause, H., Stable equivalence preserves representation type, Comment. Math. Helv., 72, 266-284 (1997) ·Zbl 0901.16008
[13]Nehring, J.; Skowroński, A., Polynomial growth trivial extensions of simply connected algebras, Fund. Math., 132, 117-134 (1989) ·Zbl 0677.16008
[14]Ohnuki, Y.; Takeda, K.; Yamagata, K., Automorphisms of repetitive algebras, J. Algebra, 232, 708-724 (2000) ·Zbl 1035.16010
[15]Pogorzały, Z.; Skowroński, A., Symmetric algebras stably equivalent to the trivial extensions of tubular algebras, J. Algebra, 181, 95-111 (1996) ·Zbl 0867.16005
[16]Rickard, J., Derived categories and stable equivalence, J. Pure Appl. Algebra, 61, 303-317 (1989) ·Zbl 0685.16016
[17]Rickard, J., Morita theory for derived categories, J. London Math. Soc., 39, 436-456 (1989) ·Zbl 0642.16034
[18]Rickard, J., Derived equivalences as derived functors, J. London Math. Soc., 43, 37-48 (1991) ·Zbl 0683.16030
[19]Ringel, C. M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099 (1984), Springer: Springer Berlin ·Zbl 0546.16013
[20]Skowroński, A., Selfinjective algebras of polynomial growth, Math. Ann., 285, 177-199 (1989) ·Zbl 0653.16021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp