[1] | Amelbkin, B. B.; Lukasevnky, H. A.; Catovcki, A. N., Nonlinear Vibration (1982), VGU Lenin Publ, pp. 19-21 (in Russian) |
[2] | Blows, T. R.; Rousseau, C., Bifurcation at infinity in polynomial vector fields, J. Differential Equations, 104, 215-242 (1993) ·Zbl 0778.34024 |
[3] | Cairó, L.; Chavarriga, J.; Giné, J.; Llibre, J., A class of reversible cubic systems with an isochronous center, Comput. Math. Appl., 38, 39-53 (1999) ·Zbl 0982.34024 |
[4] | Chavarriga, J., Integrable systems in the plane with a center type linear part, Appl. Math., 22, 285-309 (1994) ·Zbl 0809.34002 |
[5] | Chavarriga, J.; Giné, J.; García, I., Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial, Bull. Sci. Math., 123, 77-96 (1999) ·Zbl 0921.34032 |
[6] | Chavarriga, J.; Giné, J.; García, I., Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial, J. Comput. Appl. Math., 126, 351-368 (2000) ·Zbl 0978.34028 |
[7] | Christopher, C. J.; Devlin, J., Isochronous centers in planar polynomial systems, SIAM J. Math. Anal., 28, 162-177 (1997) ·Zbl 0881.34057 |
[8] | Gine, J., Conditions for the existence of a center for the Kukless homogeneous systems, Comput. Math. Appl., 43, 1261-1269 (2002) ·Zbl 1012.34025 |
[9] | Linyiping; Lijibin, Normal form and critical points of the period of closed orbits for planar autonomous systems, Acta Math. Sinica, 34, 490-501 (1991), (in Chinese) ·Zbl 0744.34041 |
[10] | Y. Liu, M. Zhao, Stability and bifurcation of limit cycles of the equator in a class of fifth polynomial systems, Chinese J. Contemp. Math. 23 (1); Y. Liu, M. Zhao, Stability and bifurcation of limit cycles of the equator in a class of fifth polynomial systems, Chinese J. Contemp. Math. 23 (1) |
[11] | Liu, Y., Theory of center-focus for a class of higher-degree critical points and infinite points, Science in China (Series A), 44, 37-48 (2001) |
[12] | Liu, Y.; Chen, H., Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system, Acta Math. Appl. Sinica, 25, 295-302 (2002), (in Chinese) ·Zbl 1014.34021 |
[13] | Liu, Y.; Huang, W., A new method to determine isochronous center conditions for polynomial differential systems, Bull. Sci. Math., 127, 133-148 (2003) ·Zbl 1034.34032 |
[14] | Liu, Y.; Li, J., Theory of values of singular point in complex autonomous differential system, Science in China (Series A), 33, 10-24 (1990) ·Zbl 0686.34027 |
[15] | Lloyd, N. G.; Christopher, J.; Devlin, J.; Pearson, J. M.; Uasmin, N., Quadratic like cubic systems, Differential Equations Dynamical Systems, 5, 3-4, 329-345 (1997) ·Zbl 0898.34026 |
[16] | Lloyd, N. G.; Pearson, J. M., Symmetry in planar dynamical systems, J. Symbolic Comput., 33, 357-366 (2002) ·Zbl 1003.34026 |
[17] | Loud, W. S., Behavior of the period of solutions of certain plane autonomous systems near centers, Contribut. Differential Equations, 3, 21-36 (1964) ·Zbl 0139.04301 |
[18] | Mardesic, P.; Rousseau, C.; Toni, B., Linearization of isochronous centers, J. Differential Equations, 121, 67-108 (1995) ·Zbl 0830.34023 |
[19] | Pleshkan, I., A new method of investigating the isochronicity of a system of two differential equations, Differential Equations, 5, 796-802 (1969) ·Zbl 0252.34034 |
[20] | Romanovski, V. G.; Suba, A., Centers of some cubic systems, Ann. Differential Equations, 17, 363-370 (2001) ·Zbl 1014.34019 |
[21] | Salih, N.; Pons, R., Center conditions for a lopsided quartic polynomial vector field, Bull. Sci. Math., 126, 369-378 (2002) ·Zbl 1015.34016 |
[22] | Ye, Y., Qualitative Theory of Polynomial Differential Systems (1995), Shanghai Sci. Tech. Publ: Shanghai Sci. Tech. Publ Shanghai, (in Chinese) ·Zbl 0854.34003 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.