Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A coupled finite element and meshless local Petrov–Galerkin method for two-dimensional potential problems.(English)Zbl 1037.65115

Summary: A coupled finite element (FE) and meshless local Petrov-Galerkin (MLPG) method for analyzing two-dimensional potential problems is presented. A transition region is created between the FE and MLPG regions. The transition region blends the trial and test functions of the FE and MLPG regions. The trial function blending is achieved using a new coupling technique similar to the ‘Coons’ patch method that is widely used in computer aided geometric design.
By using the technique, trial functions, which are similar to the isoparametric “serendipity” element, of the transition element can be constructed. The test function blending is achieved by using either the FE or MLPG test functions on the nodes. Several potential problems are used to establish the validity of the coupled method.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Cite

References:

[1]Atluri, S. N.; Kim, H.-G.; Cho, J. Y., A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods, Comput. Mech., 24, 348-372 (1999) ·Zbl 0977.74593
[2]Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127 (1998) ·Zbl 0932.76067
[3]Atluri, S. N.; Zhu, T. L., Meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics, Comput. Mech., 25, 169-179 (2000) ·Zbl 0976.74078
[4]Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 229-256 (1994) ·Zbl 0796.73077
[5]Belytschko, T.; Lu, Y. Y.; Gu, L., Crack propagation by element-free Galerkin methods, Engrg. Fract. Mech., 51, 295-315 (1995)
[6]Belytschko, T.; Organ, D.; Krongauz, Y., Coupled finite element-element-free Galerkin method, Comput. Mech., 17, 186-195 (1995) ·Zbl 0840.73058
[7]Cook, R. D.; Malkus, D. S.; Plesha, M. E., Concepts and Applications of Finite Element Analysis (1989), John Wiley and Sons: John Wiley and Sons New York ·Zbl 0696.73039
[8]S.A. Coons, Surfaces for Computer-aided Design of Space Forms, MIT, MAC-TR-41, 1967; S.A. Coons, Surfaces for Computer-aided Design of Space Forms, MIT, MAC-TR-41, 1967
[9]Duarte, C.; Oden, J. T., H-p Clouds-an h-p meshless method, Numer. Methods Partial Differential Equations, 12, 673-705 (1996) ·Zbl 0869.65069
[10]Hegen, D., Element-free Galerkin methods in combination with finite element approaches, Comput. Methods Appl. Mech. Engrg., 135, 143-166 (1996) ·Zbl 0893.73063
[11]Huerta, A.; Fernandez-Mendez, S., Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. Methods Engrg., 48, 1615-1636 (2000) ·Zbl 0976.74067
[12]Krishnamurthy, T.; Raju, I. S., Coupling finite and boundary element methods for two-dimensional potential problems, Int. J. Numer. Methods Engrg., 36, 3593-3616 (1993) ·Zbl 0798.73060
[13]Li, S.; Liu, W. K., Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1-34 (2001)
[14]Liu, G. R.; Gu, Y. T., Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation, Comput. Mech., 26, 166-173 (2000) ·Zbl 0994.74078
[15]Liu, G. R.; Gu, Y. T., Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches, Comput. Mech., 26, 536-546 (2000) ·Zbl 0990.74070
[16]Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Engrg., 20, 1081-1106 (1995) ·Zbl 0881.76072
[17]Lu, Y. Y.; Belytschko, T.; Gu, L., New implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Engrg., 113, 397-414 (1994) ·Zbl 0847.73064
[18]Lu, Y. Y.; Belytschko, T.; Liu, W. K., A variationally coupled FE-Be method for elasticity and fracture mechanics, Comput. Methods Appl. Mech. Engrg., 85, 21-37 (1991) ·Zbl 0764.73085
[19]Melenk, J. M.; Babuska, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) ·Zbl 0881.65099
[20]Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) ·Zbl 0764.65068
[21]I.S. Raju, T. Chen, Meshless Petrov-Galerkin Method Applied to Axisymmetric Problems, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, WA, 2001; I.S. Raju, T. Chen, Meshless Petrov-Galerkin Method Applied to Axisymmetric Problems, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, WA, 2001
[22]Rao, B. N.; Rahman, S., A coupled meshless-finite element method for fracture analysis of cracks, Int. J. Pressure Vessels Piping, 78, 647-657 (2001)
[23]Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1965), McGraw-Hill: McGraw-Hill New York ·Zbl 0266.73008
[24]Wagner, G. J.; Liu, W. K., Hierarchical enrichment for bridging scales and mesh-free boundary conditions, Int. J. Numer. Methods Engrg., 50, 507-524 (2001) ·Zbl 1006.76073
[25]Zhang, L. T.; Wagner, G. J.; Liu, W. K., A parallelized meshfree method with boundary enrichment for large-scale CFD, J. Comput. Phys., 176, 483-506 (2002) ·Zbl 1060.76096
[26]Zhu, T.; Zhang, J. D.; Atluri, S. N., A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput. Mech., 21, 223-235 (1998) ·Zbl 0920.76054
[27]Zienkiewicz, O. C.; Kelly, D. W.; Bettress, F., The coupling of the finite element method and boundary solution procedures, Int. J. Numer. Methods Engrg., 11, 355-375 (1977) ·Zbl 0347.65048
[28]Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method (1989), McGraw-Hill Book Company: McGraw-Hill Book Company New York ·Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp