Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Generation of finite almost simple groups by conjugates.(English)Zbl 1037.20016

Let \(G\) be a finite almost simple group and \(L=F^*(G)\). For \(x\in G\), let \(\alpha(x)\) be the minimal number of \(L\)-conjugates of \(x\) which generate the group \(\langle L,x\rangle\). The authors obtain some upper bounds on \(\alpha(x)\). For example, if \(L\) is a simple classical group of dimension at least 5 and \(x\in\operatorname{Aut}(L)\) then \(\alpha(x)\leq n\), unless \(L=\text{Sp}_n(q)\) with \(q\) even, \(x\) is a transvection and \(\alpha(x)=n+1\) (Theorem 4.2).

MSC:

20D06 Simple groups: alternating groups and groups of Lie type
20F05 Generators, relations, and presentations of groups

Cite

References:

[1]Aschbacher, M., On the maximal subgroups of the finite classical groups, Invent. Math., 76, 469-514 (1984) ·Zbl 0537.20023
[2]Aschbacher, M.; Guralnick, R., Some applications of the first cohomology group, J. Algebra, 90, 446-460 (1984) ·Zbl 0554.20017
[3]Aschbacher, M.; Seitz, G. M., Involutions in Chevalley groups over fields of even order, Nagoya Math. J., 63, 1-91 (1976) ·Zbl 0359.20014
[4]Azad, H.; Barry, M.; Seitz, G. M., On the structure of parabolic subgroups, Comm. Algebra, 18, 551-562 (1990) ·Zbl 0717.20029
[5]Benson, D., Some remarks on the decomposition numbers for the symmetric groups, Proc. Sympos. Pure Math., 47, 381-394 (1987) ·Zbl 0654.20010
[6]van Bon, J.; Ivanov, A. A.; Saxl, J., Affine distance-transitive graphs with sporadic stabilizer, European J. Combin., 20, 163-177 (1999) ·Zbl 0918.05106
[7]Borel, A.; Tits, J., Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math., 97, 499-571 (1973) ·Zbl 0272.14013
[8]Brown, M., Cohomology of Groups, Graduate Texts in Math., 87 (1994), Springer-Verlag: Springer-Verlag New York
[9]N. Burgoyne, C. Williamson, Some computations involving simple Lie algebras, in: Proceedings of the 2nd Symposium on Symbolic and Algebraic Manipulation, 1971, pp. 162-171; N. Burgoyne, C. Williamson, Some computations involving simple Lie algebras, in: Proceedings of the 2nd Symposium on Symbolic and Algebraic Manipulation, 1971, pp. 162-171
[10]Chevalley, C., Invariants of finite groups generated by reflections, Amer. J. Math., 77, 778-782 (1955) ·Zbl 0065.26103
[11]Cohen, A.; Liebeck, M.; Saxl, J.; Seitz, G., The local maximal subgroups of exceptional groups, finite and algebraic, Proc. London Math. Soc, 64, 21-48 (1992) ·Zbl 0706.20037
[12]Conway, J.; Curtis, R.; Norton, S.; Parker, R.; Wilson, R., Atlas of Finite Groups (1985), Oxford University Press: Oxford University Press Oxford ·Zbl 0568.20001
[13]Cooperstein, B. N., Maximal subgroups of \(G_2(2^n)\), J. Algebra, 70, 23-36 (1981) ·Zbl 0459.20007
[14]Cooperstein, B. N., Subgroups of exceptional groups of Lie type generated by long root elements. II. Characteristic two, J. Algebra, 70, 283-298 (1981) ·Zbl 0463.20015
[15]Curtis, C. W.; Kantor, W. M.; Seitz, G. M., The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc., 218, 1-57 (1976) ·Zbl 0374.20002
[16]Dornhoff, L., Group Representation Theory. Part A: Ordinary Representation Theory, Pure Appl. Math., 7 (1971), Dekker: Dekker New York ·Zbl 0227.20002
[17]Ellers, E.; Gordeev, N., Gauss decomposition with prescribed semisimple part in classical Chevalley groups, Comm. Algebra, 22, 5935-5950 (1994) ·Zbl 0821.20028
[18]Ellers, E.; Gordeev, N., Gauss decomposition with prescribed semisimple part in Chevalley groups. II, Exceptional cases, Comm. Algebra, 23, 3085-3098 (1995) ·Zbl 0838.20054
[19]Fong, P.; Seitz, G., Groups with a \((B,N)\)-pair of rank 2. II, Invent. Math., 24, 191-239 (1974) ·Zbl 0295.20049
[20]Freedman, A.; Gupta, R. N.; Guralnick, R. M., Shirshov’s Theorem and representations of semigroups, Pacific J. Math., Special issue, 159-176 (1997) ·Zbl 0915.20034
[21]Gluck, D.; Magaard, K., The \(k\)(GV) conjecture for modules in characteristic 31, J. Algebra, 250, 252-270 (2002) ·Zbl 1007.20009
[22]D. Goodwin, Regular orbits of linear groups with an application to the \(k GV \); D. Goodwin, Regular orbits of linear groups with an application to the \(k GV \)
[23]Goodwin, D., Regular orbits of linear groups with an application to the \(k\)(GV) problem. I, II, J. Algebra, 227, 395-432 (2000), 433-473 ·Zbl 0970.20005
[24]Gordeev, N., Coranks of elements of linear groups and the complexity of algebras of invariants, Leningrad Math. J., 2, 245-267 (1991) ·Zbl 0717.20032
[25]Gorenstein, D.; Lyons, R., The local structure of finite groups of characteristics 2 type, Mem. Amer. Math. Soc., 276 (1983) ·Zbl 0519.20014
[26]Gorenstein, D.; Lyons, R.; Solomon, R., The Classification of the Finite Simple Groups, Mathematical Surveys and Monographs, 40 (1998), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0890.20012
[27]Guralnick, R. M., Some applications of subgroup structure to probabilistic generation and covers of curves, (Carter, R. W.; Saxl, J., Algebraic Groups and Their Representations. Algebraic Groups and Their Representations, Cambridge, 1997. Algebraic Groups and Their Representations. Algebraic Groups and Their Representations, Cambridge, 1997, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 517 (1998), Kluwer Academic: Kluwer Academic Dordrecht), 301-320 ·Zbl 0973.20011
[28]Guralnick, R. M.; Kantor, W. M., Probabilistic generation of finite simple groups, J. Algebra, 234, 743-792 (2000) ·Zbl 0973.20012
[29]Guralnick, R.; Penttila, T.; Praeger, C.; Saxl, J., Linear groups with orders having certain large prime divisors, Proc. London Math. Soc., 78, 167-214 (1999) ·Zbl 1041.20035
[30]Hall, J.; Liebeck, M.; Seitz, G., Generators for finite simple groups with applications to linear groups, Quart. J. Math. Oxford Ser. (2), 43, 441-458 (1992) ·Zbl 0780.20020
[31]Huffman, C.; Wales, D., Linear groups containing an element with an eigenspace of codimension two, (Univ. Utah, Park City, Utah, 1975. Univ. Utah, Park City, Utah, 1975, Proceedings of the Conference on Finite Groups (1976), Academic Press: Academic Press New York), 425-429 ·Zbl 0346.20025
[32]Iwahori, N., Centralizers of involutions in finite Chevalley groups, (Borel, A.; etal., Seminar on Algebraic Groups and Related Finite Groups. Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math., 131 (1970), Springer-Verlag: Springer-Verlag Berlin), 267-295 ·Zbl 0242.20043
[33]Jansen, C.; Lux, K.; Parker, R.; Wilson, R., An Atlas of Brauer Characters (1995), Clarendon Press: Clarendon Press Oxford ·Zbl 0831.20001
[34]James, G. D., On the minimal dimensions of irreducible representations of symmetric groups, Math. Proc. Cambridge Philos. Soc., 94, 417-424 (1983) ·Zbl 0544.20011
[35]James, G. D.; Kerber, A., The Representation Theory of the Symmetric Group (1981), Addison-Wesley: Addison-Wesley Reading, MA ·Zbl 0491.20010
[36]Jones, W.; Parshall, B., On the 1-cohomology of finite groups of Lie type, (Scott, W. R.; Gross, F., Proceedings of the Conference on Finite Groups (1976), Academic Press: Academic Press New York) ·Zbl 0345.20046
[37]Kac, V.; Watanabe, K., Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc., 6, 221-223 (1982) ·Zbl 0483.14002
[38]Kantor, W., Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc., 248, 347-379 (1979) ·Zbl 0406.20040
[39]Kantor, W. M., Primitive permutation groups of odd degree, and an application to finite projective planes, J. Algebra, 106, 15-45 (1987) ·Zbl 0606.20003
[40]Kemper, G.; Malle, G., The finite irreducible linear groups with polynomial ring of invariants, Transform. Groups, 2, 57-89 (1997) ·Zbl 0899.13004
[41]Kleidman, P. B., The maximal subgroups of the Steinberg triality groups \(^3\) D4(q)\) and of their automorphism subgroups, J. Algebra, 115, 182-199 (1988) ·Zbl 0642.20013
[42]Kleidman, P.; Liebeck, M., The Subgroup Structure of Finite Classical Groups, London Math. Soc. Lecture Ser., 129 (1990), CUP ·Zbl 0697.20004
[43]Liebeck, M. W., The affine permutation groups of rank three, Proc. London Math. Soc., 54, 477-516 (1987) ·Zbl 0621.20001
[44]Liebeck, M. W., The classification of finite simple Moufang loops, Math. Proc. Cambridge Philos. Soc., 102, 33-47 (1987) ·Zbl 0622.20061
[45]Liebeck, M. W., Regular orbits of linear groups, J. Algebra, 184, 1136-1142 (1996) ·Zbl 0901.20006
[46]Liebeck, M. W., The classification of finite linear spaces with flag-transitive automorphism groups of affine type, J. Combin. Theory Ser. A, 84, 196-235 (1998) ·Zbl 0918.51009
[47]Liebeck, M.; Praeger, C.; Saxl, J., The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., 432, 1-151 (1990) ·Zbl 0703.20021
[48]Liebeck, M.; Saxl, J., The primitive permutation groups of odd degree, J. London Math. Soc., 31, 250-264 (1985) ·Zbl 0573.20004
[49]Liebeck, M.; Saxl, J., On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc., 55, 299-330 (1987) ·Zbl 0627.20026
[50]Liebeck, M.; Saxl, J., Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. London Math. Soc., 63, 266-314 (1991) ·Zbl 0696.20004
[51]Liebeck, M.; Saxl, J.; Seitz, G., Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc., 65, 297-325 (1992) ·Zbl 0776.20012
[52]Liebeck, M.; Saxl, J.; Seitz, G., Factorizations of simple algebraic groups, Trans. Amer. Math. Soc., 348, 799-822 (1996) ·Zbl 0848.20032
[53]Liebeck, M.; Saxl, J.; Testerman, D., Simple subgroups of large rank in groups of Lie type, Proc. London Math. Soc., 72, 425-457 (1996) ·Zbl 0855.20040
[54]Liebeck, M.; Seitz, G., Subgroups generated by long root elements in groups of Lie type, Ann. of Math., 139, 293-361 (1994) ·Zbl 0824.20041
[55]Liebeck, M.; Seitz, G., Subgroups of simple algebraic groups containing elements of fundamental subgroups, Math. Proc. Cambridge Philos. Soc., 129, 461-479 (1999) ·Zbl 0939.20049
[56]Malle, G., The maximal subgroups of \(^2 F4(q^2)\), J. Algebra, 139, 52-69 (1991) ·Zbl 0725.20014
[57]Malle, G.; Saxl, J.; Weigel, T., Generation of classical groups, Geom. Dedicata, 49, 85-116 (1994) ·Zbl 0832.20029
[58]Pollatsek, H., First cohomology groups of some linear groups over fields of characteristic two, Illinois J. Math., 15, 393-417 (1971) ·Zbl 0218.20039
[59]U. Riese, P. Schmid, Real vectors for linear groups and the \(k GV \); U. Riese, P. Schmid, Real vectors for linear groups and the \(k GV \) ·Zbl 1032.20007
[60]Robinson, G., Further reductions for the \(k\)(GV)-problem, J. Algebra, 195, 141-150 (1997) ·Zbl 0882.20007
[61]Robinson, G.; Thompson, J. G., On Brauer’s \(k(B)\)-problem, J. Algebra, 184, 1143-1160 (1986) ·Zbl 0894.20010
[62]Saxl, J., Finite simple groups and permutation groups, (Hartley, B.; etal., Finite and Locally Finite Groups (1995), Kluwer Academic: Kluwer Academic Dordrecht), 97-110 ·Zbl 0838.20032
[63]Saxl, J.; Seitz, G. M., Subgroups of algebraic groups containing regular unipotent elements, J. London Math. Soc., 55, 370-386 (1997) ·Zbl 0955.20033
[64]Saxl, J.; Wilson, J. S., A note on powers in simple groups, Proc. Cambridge Philos. Soc., 122, 91-94 (1997) ·Zbl 0890.20014
[65]Seitz, G., The root subgroups for maximal tori in finite groups of Lie type, Pacific J. Math., 106, 153-244 (1983) ·Zbl 0522.20031
[66]Shephard, G. C.; Todd, J. A., Finite unitary reflection groups, Canad. J. Math., 6, 274-304 (1954) ·Zbl 0055.14305
[67]Suzuki, M., On a class of doubly transitive groups, Ann. of Math., 75, 105-145 (1962) ·Zbl 0106.24702
[68]Suzuki, M., Group Theory, I. Grundlehren der Math. Wiss., 247 (1982), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0472.20001
[69]Wagner, A., Groups generated by elations, Abh. Math. Sem. Hamburg, 41, 190-205 (1974) ·Zbl 0288.20060
[70]Wagner, A., Collineation groups generated by homologies of order greater than 2, Geom. Dedicata, 7, 387-398 (1978) ·Zbl 0402.20036
[71]Wagner, A., Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2, III, Geom. Dedicata, 10, 475-523 (1980) ·Zbl 0471.51015
[72]Ward, H. N., On Ree’s series of simple groups, Trans. Amer. Math. Soc., 121, 62-89 (1966) ·Zbl 0139.24902
[73]Verbitsky, M., Holomorphic symplectic geometry and orbifold singularities, Asian J. Math., 4, 553-564 (2000) ·Zbl 1018.32028
[74]Zalesskii, A.; Serezhkin, V., Linear groups generated by transvections, Math. USSR Izv., 10, 25-46 (1976) ·Zbl 0355.20044
[75]Zalesskii, A.; Serezhkin, V., Finite linear groups generated by reflections, Math. USSR Izv., 17, 477-503 (1981) ·Zbl 0478.20033
[76]Zisser, I., Covering number of the sporadic simple groups, Israel J. Math., 67, 217-224 (1989) ·Zbl 0693.20016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp