Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Multilinear Calderón-Zygmund theory.(English)Zbl 1032.42020

In this paper the authors consider a systematic treatment of multilinear Calderón-Zygmund operators introduced earlier in the papers of Coifman and Meyer and ofM. Lacey andC. Thiele [Ann. Math. (2) 146, 693-724 (1997;Zbl 0914.46034); ibid. 149, 475-496 (1999;Zbl 0934.42012)]. The first main result reads as follows: Let \(m\)-linear operators be \(T: [{\mathcal S}(\mathbb{R}^n)]^m\to{\mathcal S}'(\mathbb{R}^n)\) for which there is a function \(K\) defined away from the diagonal \(x= y_1=\cdots= y_m\) in \((\mathbb{R}^n)^{m+1}\) satisfying \[|K(y_0,y_1,\dots, y_m)|\leq {c_{n,m}A\over (\sum^m_{k,l=0}|y_k- y_l|)^{nm}}\] and \[|K(y_0,\dots, y_j,\dots,y_m)- K(y_0,\dots, y_j',\dots, y_m)|\leq {c_{n,m}A|y_j- y_j'|^\varepsilon\over (\sum^m_{k,l=0}|y_k- y_l|)^{nm+ \varepsilon}},\] whenever \(0\leq j\leq m\) and \(|y_j- y_j'|\leq{1\over 2}\max_{0\leq k\leq m}|y_j- y_k|\). Let \(q_j\in [1,\infty)\) be given numbers with \(1/q= \sum^m_{j=1} 1/q_j\). Suppose that \(T\) maps \(L^{q_1,1}\times\cdots\times L^{q_m,1}\) into \(L^{q,\infty}\) if \(q> 1\) or \(L^1\) if \(q= 1\). Then for any \(p_j\in [1,\infty]\) such that \(1/m\leq p< \infty\), \(T\) extends to a bounded map from \(L^{p_1}\times\cdots\times L^{p_m}\) into \(L^p\) if all \(p_j> 1\) and into \(L^{p,\infty}\) if some \(p_j= 1\). If some \(p_k= \infty\), \(L^{p_k}\) should be replaced by \(L^\infty_c\). Moreover, \(T\) extends to a bounded map from \(L^\infty\times\cdots\times L^\infty\) to BMO. Next, the authors obtain the version of the multilinear T1 theorem byG. David andJ.-L. Journé [Ann. Math. (2) 120, 371-397 (1984;Zbl 0567.47025)]. It is proved that if \(T(e_{\xi_1},\dots, e_{\xi_m})\) and \(T^{*j}(e_{\xi_1},\dots, e_{\xi_m})\) \((\xi_1,\dots, \xi_m\in \mathbb{R}^n\), \(1\leq j\leq m)\) are bounded subsets of BMO, then \(T\) has a bounded extension from \(L^{q_1}\times\cdots\times L^{q_m}\) into \(L^q\) if \(1< q,q_j<\infty\). Here \(j\)th transpose \(T^{*j}\) of \(T\) is defined via \[\langle T^{*j}(f_1,\dots, f_m), h\rangle= \langle T(f_1,\dots, f_{j-1}, h,f_{j+1},\dots, f_m),f_j\rangle\] for all \(f_1,\dots, f_m\), \(g\) in \({\mathcal S}(\mathbb{R}^n)\). This multilinear Calderón-Zygmund theory is applied to obtain some new continuity results for multilinear translation invariant operators, multlinear pseudodifferential operators, and multilinear multipliers.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Cite

References:

[1]Benedek, A.; Calderón, A.; Panzone, R., Convolution operators on Banach-space valued functions, Proc. Natl. Acad. Sci. U.S.A., 48, 356-365 (1962) ·Zbl 0103.33402
[2]Bourdaud, G., Une algèbre maximale d’opérateurs pseudodifferentiels, Comm. Partial Differential Equations, 13, 1059-1083 (1988) ·Zbl 0659.35115
[3]Calderón, A.; Zygmund, A., On the existence of certain singular integrals, Acta Math., 88, 85-139 (1952) ·Zbl 0047.10201
[4]Calderón, A.; Zygmund, A., On singular integrals, Amer. J. Math., 78, 289-309 (1956) ·Zbl 0072.11501
[5]Christ, M.; Journé, J-L., Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159, 51-80 (1987) ·Zbl 0645.42017
[6]Coifman, R. R.; Meyer, Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212, 315-331 (1975) ·Zbl 0324.44005
[7]Coifman, R. R.; Meyer, Y., Commutateurs d’ intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28, 177-202 (1978) ·Zbl 0368.47031
[8]Coifman, R. R.; Meyer, Y., Au-delà des opérateurs pseudo-différentiels, Asterisk, 57 (1978) ·Zbl 0483.35082
[9]Coifman, R. R.; Meyer, Y., Non-linear harmonic analysis, operator theory; and P.D.E, (Stein, E. M., Beijing Lectures in Harmonic Analysis. Beijing Lectures in Harmonic Analysis, Annals of Math. Studies, 112 (1986), Princeton Univ. Press: Princeton Univ. Press Princeton) ·Zbl 0623.47052
[10]David, G.; Journé, J.-L., A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math., 120, 371-397 (1984) ·Zbl 0567.47025
[11]Grafakos, L.; Kalton, N., Some remarks on multilinear maps and interpolation, Math. Ann., 319, 151-180 (2001) ·Zbl 0982.46018
[12]L. Grafakos, and, X. Li, Uniform bounds for the bilinear Hilbert transforms, I, submitted for publication.; L. Grafakos, and, X. Li, Uniform bounds for the bilinear Hilbert transforms, I, submitted for publication. ·Zbl 1071.44004
[13]Hörmander, L., Estimates for translation invariant operators in \(L^p\) spaces, Acta Math., 104, 93-140 (1960) ·Zbl 0093.11402
[14]Hörmander, L., The Analysis of Linear Partial Differential Operators I (1990), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York ·Zbl 0687.35002
[15]Janson, S., On interpolation of multilinear operators, Function Spaces and Applications (Lund, 1986). Function Spaces and Applications (Lund, 1986), Lecture Notes in Math., 1302 (1988), Springer-Verlag: Springer-Verlag Berlin/New York ·Zbl 0827.46062
[16]Kenig, C.; Stein, E. M., Multilinear estimates and fractional integration, Math. Res. Lett., 6, 1-15 (1999) ·Zbl 0952.42005
[17]Lacey, M. T.; Thiele, C. M., \(L^p\) bounds for the bilinear Hilbert transform, \(2<p\)<∞, Ann. Math., 146, 693-724 (1997) ·Zbl 0914.46034
[18]Lacey, M. T.; Thiele, C. M., On Calderón’s conjecture, Ann. Math., 149, 475-496 (1999) ·Zbl 0934.42012
[19]X. Li, Uniform bounds for the bilinear Hilbert transforms, II, submitted for publication.; X. Li, Uniform bounds for the bilinear Hilbert transforms, II, submitted for publication.
[20]Meyer, Y.; Coifman, R. R., Wavelets: Calderón-Zygmund and Multilinear Operators (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge ·Zbl 0916.42023
[21]Peetre, J., On convolution operators leaving \(L^{p, λ}\) spaces invariant, Ann. Mat. Pura Appl., 72, 295-304 (1966) ·Zbl 0149.09102
[22]Spanne, S., Sur l’interpolation entre les espaces \(L_k^{p, Φ\) ·Zbl 0203.12403
[23]Stein, E. M., Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Singular Integrals. Singular Integrals, Proc. Sympos. Pure Math., 10 (1966), Amer. Math. Soc: Amer. Math. Soc Providence
[24]Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton ·Zbl 0207.13501
[25]Stein, E. M., Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals (1993), Princeton Univ. Press: Princeton Univ. Press Princeton ·Zbl 0821.42001
[26]Strichartz, R., A multilinear version of the Marcinkiewicz interpolation theorem, Proc. Amer. Math. Soc., 21, 441-444 (1969) ·Zbl 0175.42603
[27]C. Thiele, A uniform estimate, submitted for publication.; C. Thiele, A uniform estimate, submitted for publication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp