Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Characteristic polynomials of complex random matrix models.(English)Zbl 1030.82003

Summary: We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their Hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms of a determinant containing these polynomials and their kernel. It generalizes the known expression for Hermitian matrices and it also provides a generalization of the Christoffel formula to the complex plane. The derivation we present holds for complex matrix models with a general weight function at finite-\(N\), where \(N\) is the size of the matrix. We give some explicit examples at finite-\(N\) for specific weight functions. The characteristic polynomials in the large-\(N\) limit at weak and strong non-hermiticity follow easily and they are universal in the weak limit. We also comment on the issue of the BMN large-\(N\) limit.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
15B52 Random matrices (algebraic aspects)

Cite

References:

[1]Andreev, A. V.; Simons, B. D., Phys. Rev. Lett., 75, 2304 (1995)
[2]Verbaarschot, J., Phys. Rev. Lett., 72, 2531 (1994)
[3]Keating, J. P.; Snaith, N., Commun. Math. Phys., 214, 57 (2000) ·Zbl 1051.11048
[4]Guhr, T.; Müller-Groeling, A.; Weidenmüller, H. A., Phys. Rep., 299, 190 (1998)
[5]Fyodorov, Y. V.; Strahov, E., Nucl. Phys. B, 630, 453 (2002) ·Zbl 0994.15025
[6]Kanzieper, E., Phys. Rev. Lett., 89, 250201 (2002) ·Zbl 1267.81236
[7]Splittorff, K.; Verbaarschot, J. J.M., Phys. Rev. Lett., 90, 041601 (2003) ·Zbl 1267.82071
[8]Fyodorov, Y. V.; Akemann, G., Comment on the article “Replica limit of the Toda lattice equation” by K. Splittorff, J.J.M. Verbaarschot
[9]Fyodorov, Y. V.; Strahov, E., An exact formula for general spectral correlation function of random Hermitian matrices ·Zbl 1213.82052
[10]Strahov, E.; Fyodorov, Y. V., Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach ·Zbl 1213.82052
[11]Mehta, M. L.; Normand, J.-M., J. Phys. A: Math. Gen., 34, 1 (2001)
[12]Forrester, P. J.; Witte, N. S., Commun. Math. Phys., 219, 357 (2001) ·Zbl 1042.82019
[13]Akemann, G.; Damgaard, P. H., Phys. Lett. B, 432, 390 (1998)
[14]Damgaard, P. H.; Nishigaki, S. M., Phys. Rev. D, 57, 5299-5302 (1998)
[15]Wilke, T.; Guhr, T.; Wettig, T., Phys. Rev. D, 57, 6486 (1998)
[16]Damgaard, P. H., (Proceedings of “Quantum Chromodynamics 98”, Paris (1998)), 296-303
[17]Nagao, T.; Nishigaki, S. M., Phys. Rev. D, 62, 065006 (2000)
[18]Akemann, G.; Kanzieper, E., Phys. Rev. Lett., 85, 1174 (2000)
[19]Nagao, T.; Nishigaki, S. M., Phys. Rev. D, 63, 045011 (2001)
[20]Brézin, E.; Hikami, S., Commun. Math. Phys., 223, 363 (2001) ·Zbl 0987.15012
[21]Ginibre, J., J. Math. Phys., 6, 440 (1965) ·Zbl 0127.39304
[22]Forrester, P. J., Phys. Rep., 301, 325 (1998)
[23]Agam, O.; Bettelheim, E.; Wiegmann, P.; Zabrodin, A., Phys. Rev. Lett., 88, 236802 (2002)
[24]Zabrodin, A., New applications of non-Hermitian random matrices ·Zbl 1039.65034
[25]Constable, N. R.; Freedman, D. Z.; Headrick, M.; Minwalla, S.; Motl, L.; Postnikov, A.; Skiba, W., JHEP, 0207, 017 (2002)
[26]Berenstein, D.; Maldacena, J.; Nastase, H., JHEP, 0204, 013 (2002)
[27]Eynard, B.; Kristjansen, C., JHEP, 0210, 027 (2002)
[28]de Mello Koch, R.; Jevicki, A.; Rodrigues, J. P., Collective string field theory of matrix models in the BMN limit ·Zbl 1080.81569
[29]Stephanov, M. A., Phys. Rev. Lett., 76, 4472 (1996)
[30]Akemann, G., The solution of a chiral random matrix model with complex eigenvalues, J. Phys. A, special issue, in press ·Zbl 0999.81043
[31]Akemann, G.; Wettig, T., Matrix model correlation functions and lattice data for the QCD Dirac operator with chemical potential
[32]Akemann, G., Phys. Rev. D, 64, 114021 (2001)
[33]Akemann, G., Phys. Lett. B, 547, 100 (2002) ·Zbl 0999.81043
[34]Stahl, H.; Totik, V., General Orthogonal Polynomials (1992), Cambridge Univ. Press: Cambridge Univ. Press London ·Zbl 0791.33009
[35]Mehta, M. L., Random Matrices (1991), Academic Press: Academic Press London ·Zbl 0594.60067
[36]Szegö, G., Orthogonal Polynomials, American Mathematical Society, Colloquium Publications, 23 (1975), American Mathematical Society, Providence ·JFM 65.0278.03
[37]Abild-Pedersen, F.; Vernizzi, G., On the microscopic spectra of the massive Dirac operator for chiral orthogonal and chiral symplectic ensembles
[38]Zinn-Justin, P., Commun. Math. Phys., 194, 631 (1998)
[39]Akemann, G.; Damgaard, P. H., Nucl. Phys. B, 576, 597 (2000) ·Zbl 0971.81068
[40]Braden, H. W.; Mironov, A.; Morozov, A., Phys. Lett. B, 514, 293 (2001) ·Zbl 0971.81176
[41]Forrester, P. J.; Nagao, T., J. Phys. A, 34, 7917 (2001) ·Zbl 0999.82042
[42]Fyodorov, Y. V.; Khoruzhenko, B. A.; Sommers, H.-J., Phys. Rev. Lett., 79, 557 (1997) ·Zbl 1024.82502
[43]Di Francesco, P.; Gaudin, M.; Itzykson, C.; Lesage, F., Int. J. Mod. Phys. A, 9, 4257 (1994) ·Zbl 0988.81563
[44]Forrester, P. J.; Witte, N. S.
[45]Ambjørn, J.; Chekhov, L.; Kristjansen, C. F.; Makeenko, Yu., Nucl. Phys. B, 404, 127 (1993) ·Zbl 1043.81636
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp