Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary.(English)Zbl 1025.57016

In the papers [Holomorphic disks and topological invariants for closed three-manifolds, to appear in Ann. of Math.] and [Holomorphic disks and three-manifold invariants: properties and applications, to appear in Ann. of Math.], the authors introduced a beautiful new Floer homology theory with tremendous applications; this they extended to a 4-dimensional theory in [Holomorphic triangles and invariants for smooth four-manifolds, preprint (2001)]. The current article presents a number of impressive applications of this theory in dimensions 3 and 4.
The authors begin by defining a numerical invariant for a rational homology sphere together with a Spin\(^c\) structure, which they call a correction term. This invariant is an analog of that ofK. A. Frøyshov defined in [Math. Res. Lett. 3, 373-390 (1996;Zbl 0872.57024)]. This invariant is additive with respect to connected sums and is a rational homology cobordism invariant. The authors show that for an integral homology sphere \(Y\), this correction term represents the difference between the Casson invariant of the three-manifold and the Euler characteristic of \(HF^+_{red}(Y)\).
For an integral homology 3-sphere \(Y\), the authors define thecomplexity of \(Y\) to be the rank of \(HF^+_{red}(Y)\). Previous results giving lower bounds for the complexity of a \(Y\) and for the manifold resulting from \(1/n\)-Dehn surgery on a knot in \(Y\) are improved.
An integral homology 3-sphere is said to be invisible if both the complexity and the correction term vanish; it is shown that for any knot \(K\) in an invisible homology sphere \(Y\), if the Alexander polynomial of the knot is nontrivial then any nontrivial surgery on the knot yields a 3-manifold which is not invisible. Some restrictions on knots in \(S^3\) with lens space surgeries are obtained. A table of allowed Alexander polynomials for knots in \(S^3\) with lens space surgeries is provided. Calculations are performed for the complexity, the correction term and/or \(HF^+\) for integral homology spheres resulting from surgeries on \((p,q)\)-torus knots, for certain Brieskorn spheres, for manifolds resulting from \(1/n\)-Dehn surgery on the figure eight knot in \(S^3\), for the three-torus, and for some surgies on certain pretzel knots. A new proof of Donaldson’s diagonalizability theorem is provided. If \(X\) is a four-manifold with boundary an integral homology sphere \(Y\) and if \(\xi\) is a characteristic vector for the intersection form, it is shown that \(\xi^2 + \mathrm{rk}(H^2(X;\mathbb Z))\) is bounded above by 4 times the correction term of \(Y\). This leads to a new proof of the Thom conjecture for \({\mathbb C}P^2\), first proved byP. B. Kronheimer andT. S. Mrowka in [Math Res. Lett. 1, 797-808 (1994;Zbl 0851.57023)] and byJ. W. Morgan, Z. Szabó andC. H. Taubes in [J. Differ. Geom. 44, 706-788 (1996;Zbl 0974.53063)]. The inequality also places constraints on the intersection forms of 4-manifolds which bound certain Seifert fibered spaces.

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57R58 Floer homology
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57N10 Topology of general \(3\)-manifolds (MSC2010)
57N13 Topology of the Euclidean \(4\)-space, \(4\)-manifolds (MSC2010)

Cite

References:

[1]Atiyah, M. F.; Patodi, V. K.; Singer, I. M., Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc., 78, 3, 405-432 (1975) ·Zbl 0314.58016
[2]Austin, D. M., Equivariant Floer groups for binary polyhedral spaces, Math. Ann., 302, 2, 295-322 (1995) ·Zbl 0821.57022
[3]J.O. Berge, Some knots with surgeries giving lens spaces, unpublished manuscript.; J.O. Berge, Some knots with surgeries giving lens spaces, unpublished manuscript.
[4]D. Lines, S. Boyer, Surgery formula for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math., 405, 181-220 (1990) ·Zbl 0691.57004
[5]Braam, P.; Donaldson, S. K., Floer’s work on instanton homology, knots, and surgery, (Hofer, H.; Taubes, C. H.; Weinstein, A.; Zehnder, E., The Floer Memorial Volume. The Floer Memorial Volume, Progress in Mathematics, Vol. 133 (1995), Birkhäuser: Birkhäuser Basel), 195-256 ·Zbl 0996.57516
[6]Culler, M.; Gordon, C. McA.; Luecke, J.; Shalen, P. B., Dehn surgery on knots, Ann. of Math., 125, 2, 237-300 (1987) ·Zbl 0633.57006
[7]G. de Rham, S. Maumary, M.A. Kervaire, Torsion et type simple d’homotopie, Exposés faits au séminaire de Topologie de l’Université de Lausanne, Vol. 48, Lecture Notes in Mathematics, Springer, Berlin, 1967.; G. de Rham, S. Maumary, M.A. Kervaire, Torsion et type simple d’homotopie, Exposés faits au séminaire de Topologie de l’Université de Lausanne, Vol. 48, Lecture Notes in Mathematics, Springer, Berlin, 1967. ·Zbl 0153.53901
[8]Donaldson, S. K., An application of gauge theory to four-dimensional topology, J. Differential Geom., 18, 2, 279-315 (1983) ·Zbl 0507.57010
[9]Elkies, N. D., A characterization of the \(Z^n\) lattice, Math. Res. Lett., 2, 3, 321-326 (1995) ·Zbl 0855.11032
[10]Fintushel, R.; Stern, R. J., Constructing lens spaces by surgery on knots, Math. Z., 175, 1, 33-51 (1980) ·Zbl 0425.57001
[11]Fintushel, R.; Stern, R. J., Immersed spheres in 4-manifolds and the immersed Thom conjecture, Turkish J. Math., 19, 2, 145-157 (1995) ·Zbl 0869.57016
[12]R. Fintushel, R.J. Stern, Using Floer’s exact triangle to compute Donaldson invariants, in: The Floer Memorial Volume, Progress in Mathematics, Vol. 133, Birkhäuser, Basel, 1995, pp. 435-444.; R. Fintushel, R.J. Stern, Using Floer’s exact triangle to compute Donaldson invariants, in: The Floer Memorial Volume, Progress in Mathematics, Vol. 133, Birkhäuser, Basel, 1995, pp. 435-444. ·Zbl 0844.57017
[13]A. Floer, Instanton homology, surgery, and knots, in: Geometry of low-dimensional manifolds, 1 (Durham, 1989), London Mathematical Society, Vol. 150, Lecture Note Series, Cambridge University Press, Cambridge, 1990, pp. 97-114.; A. Floer, Instanton homology, surgery, and knots, in: Geometry of low-dimensional manifolds, 1 (Durham, 1989), London Mathematical Society, Vol. 150, Lecture Note Series, Cambridge University Press, Cambridge, 1990, pp. 97-114. ·Zbl 0788.57008
[14]Frøyshov, K. A., The Seiberg-Witten equations and four-manifolds with boundary, Math. Res. Lett., 3, 373-390 (1996) ·Zbl 0872.57024
[15]C.McA. Gordon, Some Aspects of Classical Knot Theory, Lecture Notes in Mathematics, Vol. 685, Springer, Berlin, 1978, pp. 1-60.; C.McA. Gordon, Some Aspects of Classical Knot Theory, Lecture Notes in Mathematics, Vol. 685, Springer, Berlin, 1978, pp. 1-60. ·Zbl 0386.57002
[16]C.McA. Gordon, Dehn surgery on knots, in: Proceedings of the International Congress of Mathematicians, Vol. I (Kyoto, 1990), Springer, Berlin, 1991, pp. 631-642.; C.McA. Gordon, Dehn surgery on knots, in: Proceedings of the International Congress of Mathematicians, Vol. I (Kyoto, 1990), Springer, Berlin, 1991, pp. 631-642. ·Zbl 0743.57008
[17]Hoste, J., Sewn-up \(r\)-link exteriors, Pacific J. Math., 112, 2, 347-382 (1984) ·Zbl 0539.57004
[18]Kronheimer, P. B.; Mrowka, T. S., The genus of embedded surfaces in the projective plane, Math. Res. Lett., 1, 797-808 (1994) ·Zbl 0851.57023
[19]W.B.R. Lickorish, An Introduction to Knot Theory, in: Graduate Texts in Mathematics, Vol.175, Springer, Berlin, 199.; W.B.R. Lickorish, An Introduction to Knot Theory, in: Graduate Texts in Mathematics, Vol.175, Springer, Berlin, 199. ·Zbl 0886.57001
[20]Milnor, J., Whitehead torsion, Bull. Amer. Math. Soc., 72, 358-426 (1966) ·Zbl 0147.23104
[21]J.W. Morgan, T.S. Mrowka, D. Ruberman, The \(L^2\); J.W. Morgan, T.S. Mrowka, D. Ruberman, The \(L^2\) ·Zbl 0830.58005
[22]Morgan, J. W.; Mrówka, T. S.; Szabó, Z., Product formulas along \(T^3\) for Seiberg-Witten invariants, Math. Res. Lett., 4, 6, 915-929 (1997) ·Zbl 0892.57021
[23]Morgan, J. W.; Szabó, Z.; Taubes, C. H., A product formula for Seiberg-Witten invariants and the generalized Thom conjecture, J. Differential Geom., 44, 706-788 (1996) ·Zbl 0974.53063
[24]P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math. (2001), to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math. (2001), to appear.
[25]P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math. (2001), to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math. (2001), to appear.
[26]P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169, 2001.; P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169, 2001.
[27]P.S. Ozsváth, Z. Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, math.SG/0201059, 2002.; P.S. Ozsváth, Z. Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, math.SG/0201059, 2002.
[28]P.S. Ozsváth, Z. Szabó, On the Floer homology of plumbed three-manifolds, math.SG/0203265, 2002.; P.S. Ozsváth, Z. Szabó, On the Floer homology of plumbed three-manifolds, math.SG/0203265, 2002.
[29]S. Strle, Bounds on genus and geometric intersections from cylindrical end moduli spaces, math.DG/0202178, 2002.; S. Strle, Bounds on genus and geometric intersections from cylindrical end moduli spaces, math.DG/0202178, 2002. ·Zbl 1056.57022
[30]Walker, K., An Extension of Casson’s Invariant, Annals of Mathematics Studies, Vol. 126 (1992), Princeton University Press: Princeton University Press Princeton, NJ ·Zbl 0752.57011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp