Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Classification of limiting shapes for isotropic curve flows.(English)Zbl 1023.53051

Consider a convex curve \(\gamma\) in the plane which is the image of an embedding \(x_0: S^1\to\mathbb{R}^2\). A deformation \(x\) of \(\gamma\) in a way that each point moves in the direction normal to \(\gamma\) with speed equal to a power of the curvature \(\kappa\) is a solution of the equation \[{\partial x\over\partial t}=- {1\over\alpha} \kappa^\alpha{\mathbf n},\] where \(\alpha\neq 0\) and \({\mathbf n}\) is the (outward pointing) unit normal vector. The initial condition is \(x(p,0)= x_0(p)\). The paper provides a complete description of the behaviour of embedded convex curves moving by equations of the above form. In certain cases, depending on the range of \(\alpha\), the description has been proved before.
Reviewer: F.Manhart (Wien)

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53A04 Curves in Euclidean and related spaces
35K55 Nonlinear parabolic equations

Cite

References:

[1]U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geom. 23 (1986), no. 2, 175 – 196. ·Zbl 0592.53002
[2]Ben Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom. 43 (1996), no. 2, 207 – 230. ·Zbl 0858.53005
[3]Ben Andrews, Monotone quantities and unique limits for evolving convex hypersurfaces, Internat. Math. Res. Notices 20 (1997), 1001 – 1031. ·Zbl 0892.53002 ·doi:10.1155/S1073792897000640
[4]Ben Andrews, Evolving convex curves, Calc. Var. Partial Differential Equations 7 (1998), no. 4, 315 – 371. ·Zbl 0931.53030 ·doi:10.1007/s005260050111
[5]Ben Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000), no. 1, 1 – 34. ·Zbl 1028.53072 ·doi:10.2140/pjm.2000.195.1
[6]-, Nonconvergence and instability in the asymptotic behaviour of curves evolving by curvature, Comm. Anal. Geom. 10 (2002), 409-449. ·Zbl 1029.53079
[7]Sigurd Angenent, Guillermo Sapiro, and Allen Tannenbaum, On the affine heat equation for non-convex curves, J. Amer. Math. Soc. 11 (1998), no. 3, 601 – 634. ·Zbl 0902.35048
[8]Bennett Chow and Dong-Ho Tsai, Geometric expansion of convex plane curves, J. Differential Geom. 44 (1996), no. 2, 312 – 330. ·Zbl 0872.58052
[9]K.-S. Chou and X.-P. Zhu, “The Curve Shortening Problem”, Chapman and Hall/CRC (2000).
[10]Kai-Seng Chou and Xi-Ping Zhu, A convexity theorem for a class of anisotropic flows of plane curves, Indiana Univ. Math. J. 48 (1999), no. 1, 139 – 154. ·Zbl 0979.53074 ·doi:10.1512/iumj.1999.48.1273
[11]Michael E. Gage, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), no. 4, 1225 – 1229. ·Zbl 0534.52008 ·doi:10.1215/S0012-7094-83-05052-4
[12]M. E. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984), no. 2, 357 – 364. ·Zbl 0542.53004 ·doi:10.1007/BF01388602
[13]Claus Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299 – 314. ·Zbl 0708.53045
[14]Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285 – 314. ·Zbl 0667.53001
[15]M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69 – 96. ·Zbl 0621.53001
[16]Richard S. Hamilton, Isoperimetric estimates for the curve shrinking flow in the plane, Modern methods in complex analysis (Princeton, NJ, 1992) Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 201 – 222. ·Zbl 0846.51010 ·doi:10.1016/1053-8127(94)00130-3
[17]Gerhard Huisken, A distance comparison principle for evolving curves, Asian J. Math. 2 (1998), no. 1, 127 – 133. ·Zbl 0931.53032 ·doi:10.4310/AJM.1998.v2.n1.a2
[18]Jeffrey A. Oaks, Singularities and self-intersections of curves evolving on surfaces, Indiana Univ. Math. J. 43 (1994), no. 3, 959 – 981. ·Zbl 0835.53048 ·doi:10.1512/iumj.1994.43.43042
[19]Guillermo Sapiro and Allen Tannenbaum, On affine plane curve evolution, J. Funct. Anal. 119 (1994), no. 1, 79 – 120. ·Zbl 0801.53008 ·doi:10.1006/jfan.1994.1004
[20]Richard Montgomery, Survey of singular geodesics, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 325 – 339. ·Zbl 0868.53020
[21]John I. E. Urbas, Correction to: ”An expansion of convex hypersurfaces” [J. Differential Geom. 33 (1991), no. 1, 91 – 125; MR1085136 (91j:58155)], J. Differential Geom. 35 (1992), no. 3, 763 – 765.
[22]John I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), no. 3, 355 – 372. ·Zbl 0691.35048 ·doi:10.1007/BF02571249
[23]John Urbas, Convex curves moving homothetically by negative powers of their curvature, Asian J. Math. 3 (1999), no. 3, 635 – 656. ·Zbl 0970.53039 ·doi:10.4310/AJM.1999.v3.n3.a4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp