Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Operads in algebra, topology and physics.(English)Zbl 1017.18001

Mathematical Surveys and Monographs. 96. Providence, RI: American Mathematical Society (AMS). x, 349 p. (2002).
The aim of the book is to introduce operads and to present the great variety of applications for which operads turn out to be the preferred tool. Operads describe the mathematical structures of various fields in mathematics and physics. In particular they turn out to be useful for the description of hierarchies of higher homotopies in suitable categories, and especially in algebraic topology for the study of iterated loop spaces. The discovery of new relationships of operads with graph cohomology, representation theory, algebraic geometry, derived categories, Morse theory, combinatorics, knot theory, moduli spaces, and cyclic cohomology implied further development within the theory of operads and emphasized the importance of operads. Also in the area of theoretical physics operads have been successfully applied in string theory and deformation quantization. The generalization of quadratic duality and Koszulness set up in an operadic context turned out to be useful for the study of homotopic questions in an algebraic setting.
The book provides an introduction to operads and brings together the essential results of today’s literature on the topic. In addition several constructions and results are described in a more general context as found in literature. Various gaps or omissions in the available proofs are filled for the first time here.
The book is split into two parts. In Part I an extensive review of the history of operads is presented in order to give the reader a feeling of the scope of application of operads. Part II of the book starts with definitions and basic results on operads in the general context of symmetric monoidal categories. In Chapter 2 of Part II classical results of topology are reviewed; key words are: iterated loop spaces, recognition, approximation and \(\Gamma\)-spaces, homology and homotopy invariances. Algebraic constructions like the bar and cobar construction, free operads, Koszul duality, and cohomology of operad algebras are presented in Chapter 3. In Chapter 4 geometric topics will be discussed. In particular compactification of moduli spaces and configuration spaces of points in manifolds will be considered.
The last chapter is dedicated to generalizations (or specifications) of operads such as cyclic and modular operads. These constructions are motivated by applications to deformation quantization, string field theory, Gromov-Witten invariants, etc.
The book has in view researchers and students who want to get a taste of operads and their applications.

MSC:

18-02 Research exposition (monographs, survey articles) pertaining to category theory
55-02 Research exposition (monographs, survey articles) pertaining to algebraic topology
55P48 Loop space machines and operads in algebraic topology
18D50 Operads (MSC2010)
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
57N10 Topology of general \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57T05 Hopf algebras (aspects of homology and homotopy of topological groups)

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp