Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids.(English)Zbl 1005.65024

Summary: We use the support-operator method to derive new discrete approximations of the divergence, gradient, and curl using discrete analogs of the integral identities satisfied by the differential operators. These new discrete operators are adjoint to the previously derived natural discrete operators defined using ‘natural’ coordinate-invariant definitions, such as Gauss’ theorem for the divergence.
The natural operators cannot be combined to construct discrete analogs of the second-order operatorsdiv grad, grad div, andcurl curl because of incompatibilities in domains and in the ranges of values for the operators. The same is true for the adjoint operators. However, the adjoint operators have complementary domains and ranges of values and the combined set of natural and adjoint operators allow a consistent formulation for all the compound discrete operators.
We also prove that the operators satisfy discrete analogs of the major theorems of vector analysis relating the differential operators, including \(\mathbf{div} {\overset\rightarrow {\mathbf A}}=0\) if and only if \({\overset\rightarrow{\mathbf A}}=\mathbf{curl} {\overset\rightarrow{\mathbf B}}; \mathbf{curl} {\overset\rightarrow{\mathbf A}} =0\) if and only if \({\overset\rightarrow{\mathbf A}}=\mathbf{grad}\varphi\).

MSC:

65D25 Numerical differentiation

Cite

References:

[1]Dmitrieva, M. V.; Ivanov, A. A.; Tishkin, V. F.; Favorskii, A. P., Construction and investigation of support-operators finite-difference schemes for Maxwell equations in cylindrical geometry (1985), Keldysh Inst. of Appl. Math. the USSR Ac. of Sc.,, (in Russian)
[2]Favorskii, A. P.; Tishkin, V. F.; Shashkov, M. Yu., Variational-difference schemes for the heat conduction equation on non-regular grids, Soviet. Phys. Dokl., 24, 446-448 (1979) ·Zbl 0435.65081
[3]Favorskii, A. P.; Korshiya, T. K.; Tishkin, V. F.; Shashkov, M. Yu., Difference schemes for equations of electro-magnetic field diffusion with anisotropic conductivity coefficients (1980), Keldysh Inst. of Appl. Math. the USSR Ac. of Sc.,, (in Russian) ·Zbl 0473.65068
[4]Favorskii, A. P.; Korshiya, T. K.; Shashkov, M. Yu.; Tishkin, V. F., Variational approach to the construction of finite-difference schemes for the diffusion equations for magnetic field, Differential Equations, 18, 7, 863-872 (1982)
[5]Favorskii, A. P.; Korshiya, T. K.; Shashkov, M. Yu.; Tishkin, V. F., A variational approach to the construction of difference schemes on curvilinear meshes for heat-conduction equation, Comput. Math. Math. Phys., 20, 135-155 (1980) ·Zbl 0473.65068
[6]Hyman, J. M.; Shashkov, M. Yu., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Comput. Math. Appl., 33, 4, 81-104 (1997) ·Zbl 0868.65006
[7]J.M. Hyman and M.Yu. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods, Report LA-UR-96-4735 of Los Alamos National Laboratory, Los Alamos, NM; also:SIAM J. Numer. Anal.; J.M. Hyman and M.Yu. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods, Report LA-UR-96-4735 of Los Alamos National Laboratory, Los Alamos, NM; also:SIAM J. Numer. Anal.
[8]Hyman, J. M.; Shashkov, M. Yu.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132, 130-148 (1997) ·Zbl 0881.65093
[9]Hyman, J. M.; Shashkov, M. Yu.; Steinberg, S., Problems with heterogeneous and non-isotropic media or distorted grids, (Benkhaldoun, F.; Vilsmeier, R., Proceedings of First International Symposium on Finite Volumes for Complex Applications, Problems and Perspectives. Proceedings of First International Symposium on Finite Volumes for Complex Applications, Problems and Perspectives, Rouen, France, July 15-18, 1996 (1996), Hermes,: Hermes, Paris), 249-260
[10]Knupp, P. M.; Steinberg, S., The Fundamentals of Grid Generation (1993), CRC Press,: CRC Press, Boca Raton, FL
[11]Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) ·Zbl 0759.65006
[12]Leventhal, S. H., An operator compact implicit method of exponential type, J. Comput. Phys., 46, 138-165 (1982) ·Zbl 0514.76086
[13]Lynch, R. E.; Rice, J. R., A high-order difference method for differential equations, Math. Comp., 34, 333-372 (1980) ·Zbl 0424.65037
[14]Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. Yu., Employment of the reference-operator method in the construction of finite-difference analogs of tensor operations, Differential Equations, 18, 881-885 (1982) ·Zbl 0532.65069
[15]Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. Yu., Operational finite-difference schemes, Differential Equations, 17, 854-862 (1981) ·Zbl 0485.65060
[16]Shashkov, M. Yu., Conservative Finite-Difference Schemes on General Grids (1995), CRC Press,: CRC Press, Boca Raton, FL
[17]Shashkov, M. Yu.; Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129, 383-405 (1996) ·Zbl 0874.65062
[18]Shashkov, M. Yu.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys., 118, 131-151 (1995) ·Zbl 0824.65101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp