[1] | Dmitrieva, M. V.; Ivanov, A. A.; Tishkin, V. F.; Favorskii, A. P., Construction and investigation of support-operators finite-difference schemes for Maxwell equations in cylindrical geometry (1985), Keldysh Inst. of Appl. Math. the USSR Ac. of Sc.,, (in Russian) |
[2] | Favorskii, A. P.; Tishkin, V. F.; Shashkov, M. Yu., Variational-difference schemes for the heat conduction equation on non-regular grids, Soviet. Phys. Dokl., 24, 446-448 (1979) ·Zbl 0435.65081 |
[3] | Favorskii, A. P.; Korshiya, T. K.; Tishkin, V. F.; Shashkov, M. Yu., Difference schemes for equations of electro-magnetic field diffusion with anisotropic conductivity coefficients (1980), Keldysh Inst. of Appl. Math. the USSR Ac. of Sc.,, (in Russian) ·Zbl 0473.65068 |
[4] | Favorskii, A. P.; Korshiya, T. K.; Shashkov, M. Yu.; Tishkin, V. F., Variational approach to the construction of finite-difference schemes for the diffusion equations for magnetic field, Differential Equations, 18, 7, 863-872 (1982) |
[5] | Favorskii, A. P.; Korshiya, T. K.; Shashkov, M. Yu.; Tishkin, V. F., A variational approach to the construction of difference schemes on curvilinear meshes for heat-conduction equation, Comput. Math. Math. Phys., 20, 135-155 (1980) ·Zbl 0473.65068 |
[6] | Hyman, J. M.; Shashkov, M. Yu., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Comput. Math. Appl., 33, 4, 81-104 (1997) ·Zbl 0868.65006 |
[7] | J.M. Hyman and M.Yu. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods, Report LA-UR-96-4735 of Los Alamos National Laboratory, Los Alamos, NM; also:SIAM J. Numer. Anal.; J.M. Hyman and M.Yu. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods, Report LA-UR-96-4735 of Los Alamos National Laboratory, Los Alamos, NM; also:SIAM J. Numer. Anal. |
[8] | Hyman, J. M.; Shashkov, M. Yu.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132, 130-148 (1997) ·Zbl 0881.65093 |
[9] | Hyman, J. M.; Shashkov, M. Yu.; Steinberg, S., Problems with heterogeneous and non-isotropic media or distorted grids, (Benkhaldoun, F.; Vilsmeier, R., Proceedings of First International Symposium on Finite Volumes for Complex Applications, Problems and Perspectives. Proceedings of First International Symposium on Finite Volumes for Complex Applications, Problems and Perspectives, Rouen, France, July 15-18, 1996 (1996), Hermes,: Hermes, Paris), 249-260 |
[10] | Knupp, P. M.; Steinberg, S., The Fundamentals of Grid Generation (1993), CRC Press,: CRC Press, Boca Raton, FL |
[11] | Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) ·Zbl 0759.65006 |
[12] | Leventhal, S. H., An operator compact implicit method of exponential type, J. Comput. Phys., 46, 138-165 (1982) ·Zbl 0514.76086 |
[13] | Lynch, R. E.; Rice, J. R., A high-order difference method for differential equations, Math. Comp., 34, 333-372 (1980) ·Zbl 0424.65037 |
[14] | Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. Yu., Employment of the reference-operator method in the construction of finite-difference analogs of tensor operations, Differential Equations, 18, 881-885 (1982) ·Zbl 0532.65069 |
[15] | Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. Yu., Operational finite-difference schemes, Differential Equations, 17, 854-862 (1981) ·Zbl 0485.65060 |
[16] | Shashkov, M. Yu., Conservative Finite-Difference Schemes on General Grids (1995), CRC Press,: CRC Press, Boca Raton, FL |
[17] | Shashkov, M. Yu.; Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129, 383-405 (1996) ·Zbl 0874.65062 |
[18] | Shashkov, M. Yu.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys., 118, 131-151 (1995) ·Zbl 0824.65101 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.