65N06 | Finite difference methods for boundary value problems involving PDEs |
35J05 | Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation |
65N30 | Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs |
65N12 | Stability and convergence of numerical methods for boundary value problems involving PDEs |
65N15 | Error bounds for boundary value problems involving PDEs |
[1] | Favorskii, A.; Samarskii, A.; Shashkov, M.; Tishkin, V., Operational finite-difference schemes, Differential Equations, 17, 854-862 (1981) ·Zbl 0485.65060 |
[2] | Shashkov, M.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, Journal of Computational Physics, 118, 131-151 (1995) ·Zbl 0824.65101 |
[3] | Shashkov, M.; Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, Journal of Computational Physics, 129, 383-405 (1996) ·Zbl 0874.65062 |
[4] | Shashkov, M., Conservative Finite-Difference Methods on General Grids (1995), CRC Press: CRC Press Boca Raton, FL ·Zbl 0844.65067 |
[5] | Caramana, E. J.; Burton, D. E.; Shashkov, M.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, Journal of Computational Physics, 146, 227-262 (1998) ·Zbl 0931.76080 |
[6] | Hyman, J. M.; Shashkov, M., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Computers Math. Applic., 33, 4, 81-104 (1997) ·Zbl 0868.65006 |
[7] | Hyman, J. M.; Shashkov, M.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, Journal of Computational Physics, 132, 130-148 (1997) ·Zbl 0881.65093 |
[8] | Hyman, J. M.; Shashkov, M., The adjoint operators for natural discretizations for the divergence, gradient and curl on logically rectangular grids, IMACS Journal—Applied Numerical Mathematics, 25, 413-442 (1997) ·Zbl 1005.65024 |
[9] | Hyman, J. M.; Shashkov, M., The approximation of boundary conditions for mimetic finite difference methods, Computers Math. Applic., 36, 5, 79-99 (1998) ·Zbl 0932.65111 |
[10] | Hyman, J.; Shashkov, M., Mimetic discretizations for Maxwell’s equations, Journal of Computational Physics, 151, 881-909 (1999) ·Zbl 0956.78015 |
[11] | Margolin, L.; Shashkov, M., Using a curvilinear grid to construct symmetry-preserving discretization for Lagrangian gas dynamics, Journal of Computational Physics, 149, 389-417 (1999) ·Zbl 0936.76057 |
[12] | L. Margolin, P. Smolarkiewicz and M. Shashkov, A discrete operator calculus for finite difference approximations, Report LA-UR-98-2835 of Los Alamos National Laboratory, Los Alamos, NM; Journal of Computer Methods in Applied Mechanics and Engineering (to appear).; L. Margolin, P. Smolarkiewicz and M. Shashkov, A discrete operator calculus for finite difference approximations, Report LA-UR-98-2835 of Los Alamos National Laboratory, Los Alamos, NM; Journal of Computer Methods in Applied Mechanics and Engineering (to appear). |
[13] | Morel, J. E.; Roberts, R. M.; Shashkov, M., A local support-operator diffusion discretization scheme for quadrilateralr-z meshes, Journal of Computational Physics, 144, 17-51 (1998) ·Zbl 1395.76052 |
[14] | Arbogast, T.; Dawson, C. N.; Keenan, P. T.; Wheeler, M. F.; Yotov, I., Enhanced cell-centered finite differences for elliptic equations on general geometry, SIAM Journal of Scientific Computing, 18, 1-32 (1997) |
[15] | Cai, Z.; Jones, J. E.; McCormick, S. F.; Russel, T. F., Control-volume mixed finite element methods, Computational Geosciences, 1, 289-315 (1997) ·Zbl 0941.76050 |
[16] | Knupp, P. M.; Steinberg, S., The Fundamentals of Grid Generation (1993), CRC Press: CRC Press Boca Raton, FL |
[17] | MacKinnon, R. J.; Carey, G. F., Analysis of material interface discontinuities and superconvergent fluxes in finite difference theory, Journal of Computational Physics, 75, 151-167 (1988) ·Zbl 0632.76110 |