Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Finite element method. Vol. 1: The basis. 5th ed.(English)Zbl 0991.74002

Oxford: Butterworth-Heinemann. 712 p. (2000).
For many years continuum mechanics elaborated models of media and methods of finding solutions on the basis of these models. The abilities of engineers to solve the resulting boundary value problems were restricted to a comparatively small set of problems either having analytic solutions or approximate solutions within reasonable amounts of computation. Computers changed not only the viewpoint from which numerical methods could be exploited, but also the choice of mathematical models relevant to applications. The set of practical models grew, as did the set of practical problems whose solutions computer found with a good accuracy. In the pre-computer era, the main problem of continuous mechanics was to formulate boundary value problems for the corresponding systems of partial differential equations; now the emphasis has shifted to the development of finite models that accurately describe space-distributed objects while taking into account the great complexity of material properties. In this sense the finite element method (FEM) has many advantages, because it embeds and inherits all the results of the continuum theory and enhances our abilities to solve new industrial problems. However, the use of the finite element method (or better, methods, since several modifications exist) is often far from the use of a “black box” program where a user can simply push a button and get a result. For accurate solution of complex problems it is necessary to understand the background of FEM and the domain of its applicability.
The book under consideration is one of the most valuable sources of such information for practitioners. Generations of engineers and researchers learned FEM techniques from Zienkiewicz’s books [for the review of the previous editions seeZbl 0435.73072,Zbl 0974.76003,Zbl 0974.76004,Zbl 0979.74002,Zbl 0979.74003]. They are classics in the area. This one, written with R. L. Taylor, summarizes the results of renowned authors. Practical and theoretical developments in FEM imply that the volumes of this book must grow from edition to edition. To a novice the book may seem huge, but an expert will be surprised at the authors’ ability to embed so much material into such a limited amount of space. The book is actually quite brilliant: it is complete, concise, and self-contained. The explanations are clear, all the topics are well-motivated, and the book should be useful even to the non-specialist. The mathematical level of the presentation is accessible to engineers, and thus the book becomes a priceless source of tools and ideas for practitioners. The book is divided into three large volumes, which could be even larger if the authors did not exclude the computer source codes. These complete codes are freely available in Internethttp://www.bh.com/companions/fem/.
The first volume deals with the principal problems of linear continuum mechanics and presents the main ideas that underlie FEM. It discusses the mathematical formulations of the problems, needed variational results, and many details of FEM. A significant portion of the first volume is devoted to problems of linear elasticity, a field in which much of the early development of FEM occurred. But the first volume treats also a variety of linear problems of mechanics, including fluid mechanics, coupled problems of mechanics, etc. This new edition covers some important recent topics such as adaptive error control, meshless and point based methods, and some others. It is worth stressing that the mathematical prerequisites are kept to minimum, so the book should be accessible to engineers and researchers equipped with a standard knowledge of mathematics.

MSC:

74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp