Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Arithmetic discriminants and morphisms of curves.(English)Zbl 0982.11035

Let \(C\) be a curve over a number field \(k\), with regular model \(X\) over the ring of integers \(R\) of \(k\). For an algebraic point \(P \in C\), the arithmetic discriminant is defined by a formula analogous to the adjunction formula for the genus of a curve on a surface, \[d_a(P) = (H_P . (\omega_{X/\text{Spec} R} + H_P))/[k(P) : k]\] where \(H_P\) is the arithmetic curve on \(X\) corresponding to \(P\).
Let \(h\) be a Weil height on \(C\) associated to a degree \(1\) divisor; thenP. Vojta [J. Am.Math.Soc.5, 763-804 (1992;Zbl 0778.11037)] proves that \(h_K(P) \leq d_a(P) + \epsilon h(P) + O_\epsilon(1)\) for all \(\epsilon > 0\). Here \(h_K\) is a Weil height associated to the canonical divisor \(K\) on \(C\). Vojta conjectures that one may replace \(d_a(P)\) by \(d(P) = \log |N_{k/{\mathbb Q}} D_{k(P)/k}|/[k(P) : {\mathbb Q}]\), the normalised field discriminant of \(k(P)\).
Vojta’s inequality provides a lower bound for \(d_a(P)\) in terms of \(h_K(P)\) and \(h(P)\). In the paper under review, the authors provide an upper bound, namely \[d_a(P) \leq h_K(P) + 2[k(P) : k] h(P) + O(1).\] This is then used to generalise a result of Vojta’s on the finiteness of the set of points on \(C\) of given degree mapping to points with the same field of definition under a dominant morphism \(f : C \to C'\). Vojta’s original result is the special case \(C' = {\mathbb P}^1\).
The authors proceed to sharpen their upper bound for points in a dense open subset of \(C\) to get \(d_a(P) \leq h_K(P) + (2[k(P) : k] - 2 + \epsilon) h(P) + O_\epsilon(1)\) if \([k(P) : k] \leq g(C)\). This leads to corresponding variants of the results derived from the upper bound.
In a concluding section, the authors show that on bi-elliptic genus \(2\) curves, there are families of quadratic points satisfying \(d_a(P) = h_K(P) + 2 h(P) + O(1)\) (besides other families, where \(2h(P)\) is replaced by \(0\) or by \(4h(P)\)).
The reader should be warned that there are a few misprints in this paper, namely on page 1925, where the ‘\(\geq\)’ sign in Corollary 2.1 should be a ‘\(>\)’ sign, and on page 1926, where the formulas involving the ramification divisor \(R_f\) are erroneous.

MSC:

11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11J25 Diophantine inequalities
14G05 Rational points
14G25 Global ground fields in algebraic geometry
11G50 Heights
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14H25 Arithmetic ground fields for curves

Citations:

Zbl 0778.11037

Cite

References:

[1]Dan Abramovich and Joe Harris, Abelian varieties and curves in \?_{\?}(\?), Compositio Math. 78 (1991), no. 2, 227 – 238. ·Zbl 0748.14010
[2]E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. ·Zbl 0559.14017
[3]Gary Cornell and Joseph H. Silverman , Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 – August 10, 1984. ·Zbl 0596.00007
[4]Gary Cornell and Joseph H. Silverman , Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 – August 10, 1984. ·Zbl 0596.00007
[5]Olivier Debarre and Rachid Fahlaoui, Abelian varieties in \?^{\?}_{\?}(\?) and points of bounded degree on algebraic curves, Compositio Math. 88 (1993), no. 3, 235 – 249. ·Zbl 0808.14025
[6]Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549 – 576. ·Zbl 0734.14007 ·doi:10.2307/2944319
[7]Gerd Faltings, The general case of S. Lang’s conjecture, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991) Perspect. Math., vol. 15, Academic Press, San Diego, CA, 1994, pp. 175 – 182. ·Zbl 0823.14009
[8]Gerhard Frey, Curves with infinitely many points of fixed degree, Israel J. Math. 85 (1994), no. 1-3, 79 – 83. ·Zbl 0808.14022 ·doi:10.1007/BF02758637
[9]William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. ·Zbl 0541.14005
[10]Joe Harris and Joe Silverman, Bielliptic curves and symmetric products, Proc. Amer. Math. Soc. 112 (1991), no. 2, 347 – 356. ·Zbl 0727.11023
[11]Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. ·Zbl 0367.14001
[12]Ernst Kani, The number of curves of genus two with elliptic differentials, J. Reine Angew. Math. 485 (1997), 93 – 121. ·Zbl 0867.11045 ·doi:10.1515/crll.1997.485.93
[13]Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. ·Zbl 0528.14013
[14]Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. ·Zbl 0667.14001
[15]G. Martens, On coverings of elliptic curves, Algebra and number theory (Essen, 1992) de Gruyter, Berlin, 1994, pp. 137 – 151. ·Zbl 0822.14018
[16]Joseph H. Silverman, Rational points on symmetric products of a curve, Amer. J. Math. 113 (1991), no. 3, 471 – 508. ·Zbl 0749.14013 ·doi:10.2307/2374836
[17]Xiangjun Song and Thomas J. Tucker, Dirichlet’s theorem, Vojta’s inequality, and Vojta’s conjecture, Compositio Math. 116 (1999), no. 2, 219 – 238. ·Zbl 0933.11033 ·doi:10.1023/A:1000948001301
[18]T. J. Tucker, Generalizations of Hilbert’s irreducibility theorem, preprint.
[19]Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. ·Zbl 0609.14011
[20]Paul Vojta, Arithmetic discriminants and quadratic points on curves, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 359 – 376. ·Zbl 0749.14018 ·doi:10.1007/PL00011403
[21]Paul Vojta, A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing, J. Amer. Math. Soc. 5 (1992), no. 4, 763 – 804. ·Zbl 0778.11037
[22]S. Zhang, Note to G. Frey, 1994.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp