11G30 | Curves of arbitrary genus or genus \(\ne 1\) over global fields |
11J25 | Diophantine inequalities |
14G05 | Rational points |
14G25 | Global ground fields in algebraic geometry |
11G50 | Heights |
14G40 | Arithmetic varieties and schemes; Arakelov theory; heights |
14H25 | Arithmetic ground fields for curves |
[1] | Dan Abramovich and Joe Harris, Abelian varieties and curves in \?_{\?}(\?), Compositio Math. 78 (1991), no. 2, 227 – 238. ·Zbl 0748.14010 |
[2] | E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. ·Zbl 0559.14017 |
[3] | Gary Cornell and Joseph H. Silverman , Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 – August 10, 1984. ·Zbl 0596.00007 |
[4] | Gary Cornell and Joseph H. Silverman , Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 – August 10, 1984. ·Zbl 0596.00007 |
[5] | Olivier Debarre and Rachid Fahlaoui, Abelian varieties in \?^{\?}_{\?}(\?) and points of bounded degree on algebraic curves, Compositio Math. 88 (1993), no. 3, 235 – 249. ·Zbl 0808.14025 |
[6] | Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549 – 576. ·Zbl 0734.14007 ·doi:10.2307/2944319 |
[7] | Gerd Faltings, The general case of S. Lang’s conjecture, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991) Perspect. Math., vol. 15, Academic Press, San Diego, CA, 1994, pp. 175 – 182. ·Zbl 0823.14009 |
[8] | Gerhard Frey, Curves with infinitely many points of fixed degree, Israel J. Math. 85 (1994), no. 1-3, 79 – 83. ·Zbl 0808.14022 ·doi:10.1007/BF02758637 |
[9] | William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. ·Zbl 0541.14005 |
[10] | Joe Harris and Joe Silverman, Bielliptic curves and symmetric products, Proc. Amer. Math. Soc. 112 (1991), no. 2, 347 – 356. ·Zbl 0727.11023 |
[11] | Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. ·Zbl 0367.14001 |
[12] | Ernst Kani, The number of curves of genus two with elliptic differentials, J. Reine Angew. Math. 485 (1997), 93 – 121. ·Zbl 0867.11045 ·doi:10.1515/crll.1997.485.93 |
[13] | Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. ·Zbl 0528.14013 |
[14] | Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. ·Zbl 0667.14001 |
[15] | G. Martens, On coverings of elliptic curves, Algebra and number theory (Essen, 1992) de Gruyter, Berlin, 1994, pp. 137 – 151. ·Zbl 0822.14018 |
[16] | Joseph H. Silverman, Rational points on symmetric products of a curve, Amer. J. Math. 113 (1991), no. 3, 471 – 508. ·Zbl 0749.14013 ·doi:10.2307/2374836 |
[17] | Xiangjun Song and Thomas J. Tucker, Dirichlet’s theorem, Vojta’s inequality, and Vojta’s conjecture, Compositio Math. 116 (1999), no. 2, 219 – 238. ·Zbl 0933.11033 ·doi:10.1023/A:1000948001301 |
[18] | T. J. Tucker, Generalizations of Hilbert’s irreducibility theorem, preprint. |
[19] | Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. ·Zbl 0609.14011 |
[20] | Paul Vojta, Arithmetic discriminants and quadratic points on curves, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 359 – 376. ·Zbl 0749.14018 ·doi:10.1007/PL00011403 |
[21] | Paul Vojta, A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing, J. Amer. Math. Soc. 5 (1992), no. 4, 763 – 804. ·Zbl 0778.11037 |
[22] | S. Zhang, Note to G. Frey, 1994. |