20G40 | Linear algebraic groups over finite fields |
20P05 | Probabilistic methods in group theory |
20E45 | Conjugacy classes for groups |
[1] | J. Fulman, Probability in the Classical Groups over Finite Fields: Symmetric Functions, Stochastic Algorithms and Cycle Indices, Harvard University, 1997; J. Fulman, Probability in the Classical Groups over Finite Fields: Symmetric Functions, Stochastic Algorithms and Cycle Indices, Harvard University, 1997 |
[2] | J. Fulman, The Rogers-Ramanujan identities, the finite general linear groups, and the Hall-Littlewood polynomials, Proc. Amer. Math. Soc.; J. Fulman, The Rogers-Ramanujan identities, the finite general linear groups, and the Hall-Littlewood polynomials, Proc. Amer. Math. Soc. ·Zbl 1005.11050 |
[3] | J. Fulman, Cycle indices for the finite classical groups, J. Group Theory; J. Fulman, Cycle indices for the finite classical groups, J. Group Theory ·Zbl 0943.20048 |
[4] | Garsia, A. M.; Haiman, M., A random \(qt\), J. Combin. Theory Ser. A, 82, 74-111 (1998) ·Zbl 0908.05082 |
[5] | J. Goldman, G. C. Rota, The number of subspaces of a vector space,in; J. Goldman, G. C. Rota, The number of subspaces of a vector space,in ·Zbl 0196.02801 |
[6] | Greene, C.; Nijenhuis, A.; Wilf, H., A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. in Math., 31, 104-109 (1979) ·Zbl 0398.05008 |
[7] | Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (1979), Oxford Science Publications ·Zbl 0423.10001 |
[8] | Herstein, I. N., Topics in Algebra (1975), Xerox College Publishing: Xerox College Publishing Lexington ·Zbl 1230.00004 |
[9] | Humphreys, J., Conjugacy Classes in Semisimple Algebraic Groups. Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, 43 (1995), Amer. Math. Soc: Amer. Math. Soc Providence ·Zbl 0834.20048 |
[10] | Kerov, S. V., A \(q\), J. Algebraic Combin., 2, 383-396 (1993) ·Zbl 0785.05087 |
[11] | Kerov, S. V., The boundary of Young lattice and random Young tableaux, Formal Power Series and Algebraic Combinatorics. Formal Power Series and Algebraic Combinatorics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24 (1994), Amer. Math. Soc: Amer. Math. Soc Providence, p. 133-158 ·Zbl 0856.05008 |
[12] | Kung, J., The cycle structure of a linear transformation over a finite field, Linear Algebra Appl., 36, 141-155 (1981) ·Zbl 0477.05008 |
[13] | Lusztig, G., A note on counting nilpotent matrices of a fixed rank, Bull. London Math. Soc., 8, 77-80 (1976) ·Zbl 0329.20029 |
[14] | Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Clarendon: Clarendon Oxford ·Zbl 0487.20007 |
[15] | A. Rudvalis, K. Shinoda, An enumeration in finite classical groups; A. Rudvalis, K. Shinoda, An enumeration in finite classical groups |
[16] | Sagan, B., The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions (1991), Wadsworth and Brooks/Cole: Wadsworth and Brooks/Cole Belmont ·Zbl 0823.05061 |
[17] | Shinoda, K., Identities of Euler and finite classical groups, Proceedings of Asian Mathematical Conference, Hong Kong, 1990 (1992), World Sci. Publishing: World Sci. Publishing River Edge, p. 423-427 ·Zbl 0940.05507 |
[18] | Stong, R., Some asymptotic results on finite vector spaces, Adv. Appl. Math., 9, 167-199 (1988) ·Zbl 0681.05004 |
[19] | A. M. Vershik, Asymptotic combinatorics and algebraic analysis,in; A. M. Vershik, Asymptotic combinatorics and algebraic analysis,in ·Zbl 0843.05003 |
[20] | Vershik, A. M., Statistical mechanics of combinatorial partitions, and their limit shapes, Funct. Anal. Appl., 30, 90-105 (1996) ·Zbl 0868.05004 |
[21] | Wall, G. E., On conjugacy classes in the unitary, symplectic, and orthogonal groups, J. Austral. Math. Soc., 3, 1-63 (1963) ·Zbl 0122.28102 |