Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A probabilistic approach toward conjugacy classes in the finite general linear and unitary groups.(English)Zbl 0980.20036

Summary: The conjugacy classes of the finite general linear and unitary groups are used to define probability measures on the set of all partitions of all natural numbers. Probabilistic algorithms for growing random partitions according to these measures are obtained. These algorithms are applied to prove group theoretic results which are typically proved by techniques such as character theory and Möbius inversion. Among the theorems studied are Steinberg’s count of unipotent elements, Rudvalis’ and Shinoda’s work on the fixed space of a random matrix, and Lusztig’s count of nilpotent matrices of a given rank. Generalizations of these algorithms based on Macdonald’s symmetric functions are given.

MSC:

20G40 Linear algebraic groups over finite fields
20P05 Probabilistic methods in group theory
20E45 Conjugacy classes for groups

Cite

References:

[1]J. Fulman, Probability in the Classical Groups over Finite Fields: Symmetric Functions, Stochastic Algorithms and Cycle Indices, Harvard University, 1997; J. Fulman, Probability in the Classical Groups over Finite Fields: Symmetric Functions, Stochastic Algorithms and Cycle Indices, Harvard University, 1997
[2]J. Fulman, The Rogers-Ramanujan identities, the finite general linear groups, and the Hall-Littlewood polynomials, Proc. Amer. Math. Soc.; J. Fulman, The Rogers-Ramanujan identities, the finite general linear groups, and the Hall-Littlewood polynomials, Proc. Amer. Math. Soc. ·Zbl 1005.11050
[3]J. Fulman, Cycle indices for the finite classical groups, J. Group Theory; J. Fulman, Cycle indices for the finite classical groups, J. Group Theory ·Zbl 0943.20048
[4]Garsia, A. M.; Haiman, M., A random \(qt\), J. Combin. Theory Ser. A, 82, 74-111 (1998) ·Zbl 0908.05082
[5]J. Goldman, G. C. Rota, The number of subspaces of a vector space,in; J. Goldman, G. C. Rota, The number of subspaces of a vector space,in ·Zbl 0196.02801
[6]Greene, C.; Nijenhuis, A.; Wilf, H., A probabilistic proof of a formula for the number of Young tableaux of a given shape, Adv. in Math., 31, 104-109 (1979) ·Zbl 0398.05008
[7]Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (1979), Oxford Science Publications ·Zbl 0423.10001
[8]Herstein, I. N., Topics in Algebra (1975), Xerox College Publishing: Xerox College Publishing Lexington ·Zbl 1230.00004
[9]Humphreys, J., Conjugacy Classes in Semisimple Algebraic Groups. Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, 43 (1995), Amer. Math. Soc: Amer. Math. Soc Providence ·Zbl 0834.20048
[10]Kerov, S. V., A \(q\), J. Algebraic Combin., 2, 383-396 (1993) ·Zbl 0785.05087
[11]Kerov, S. V., The boundary of Young lattice and random Young tableaux, Formal Power Series and Algebraic Combinatorics. Formal Power Series and Algebraic Combinatorics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24 (1994), Amer. Math. Soc: Amer. Math. Soc Providence, p. 133-158 ·Zbl 0856.05008
[12]Kung, J., The cycle structure of a linear transformation over a finite field, Linear Algebra Appl., 36, 141-155 (1981) ·Zbl 0477.05008
[13]Lusztig, G., A note on counting nilpotent matrices of a fixed rank, Bull. London Math. Soc., 8, 77-80 (1976) ·Zbl 0329.20029
[14]Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Clarendon: Clarendon Oxford ·Zbl 0487.20007
[15]A. Rudvalis, K. Shinoda, An enumeration in finite classical groups; A. Rudvalis, K. Shinoda, An enumeration in finite classical groups
[16]Sagan, B., The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions (1991), Wadsworth and Brooks/Cole: Wadsworth and Brooks/Cole Belmont ·Zbl 0823.05061
[17]Shinoda, K., Identities of Euler and finite classical groups, Proceedings of Asian Mathematical Conference, Hong Kong, 1990 (1992), World Sci. Publishing: World Sci. Publishing River Edge, p. 423-427 ·Zbl 0940.05507
[18]Stong, R., Some asymptotic results on finite vector spaces, Adv. Appl. Math., 9, 167-199 (1988) ·Zbl 0681.05004
[19]A. M. Vershik, Asymptotic combinatorics and algebraic analysis,in; A. M. Vershik, Asymptotic combinatorics and algebraic analysis,in ·Zbl 0843.05003
[20]Vershik, A. M., Statistical mechanics of combinatorial partitions, and their limit shapes, Funct. Anal. Appl., 30, 90-105 (1996) ·Zbl 0868.05004
[21]Wall, G. E., On conjugacy classes in the unitary, symplectic, and orthogonal groups, J. Austral. Math. Soc., 3, 1-63 (1963) ·Zbl 0122.28102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp