Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Diffusion in poro-elastic media.(English)Zbl 0979.74018

The author considers a system of equations which models diffusion in porous linear elastic medium saturated by a slightly compressible viscous fluid. The system consists of the equilibrium equation for momentum and diffusion equation for Darcy flow. The existence-uniqueness-regularity theory is developed by using the theory of evolution equations in Hilbert space and the classical semigroup theory. The author gives a description of appropriate Lebesgue and Sobolev spaces, and constructs differential operators that represent coupled elasticity and diffusion equations. It is proved that the quasi-static initial-boundary value problem is a well-posed parabolic problem, and the corresponding strong solution is sufficiently regular. The corresponding estimates are obtained directly from the abstract theory, which allows to prove the existence and uniqueness of a weak solution under weak assumptions on the data. A special interest is given to the problem when the evolution is parabolic or merely hyperbolic.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
35Q72 Other PDE from mechanics (MSC2000)
35Q35 PDEs in connection with fluid mechanics
76R50 Diffusion

Cite

References:

[1]Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York ·Zbl 0186.19101
[2]Allegretto, W.; Cannon, J. R.; Lin, Yanping, A parabolic integro-differential equation arising from thermoelastic contact, Dynam. Systems, 3, 217-234 (1997) ·Zbl 0948.35067
[3]Auriault, J.-L.; Sanchez-Palencia, Etude du comportement macroscopic d’un mileu poreux saturé déformable, J. Mécanique, 16, 575-603 (1977) ·Zbl 0382.73013
[4]Bai, M.; Elsworth, D.; Roegiers, J.-C., Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs, Water Resour. Res., 29, 1621-1633 (1993)
[5]Berryman, J. G.; Wang, H. F., The elastic coefficients of double-porosity models for fluid transport in jointed rock, J. Geophys. Res., 100, 24,611-24,627 (1995)
[6]Beskos, D. E.; Aifantis, E. C., On the theory of consolidation with double porosity, II, Internat. J. Engrg. Sci., 24, 1697-1716 (1986) ·Zbl 0601.73109
[7]Biot, M., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) ·JFM 67.0837.01
[8]Biot, M., Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 182-185 (1955) ·Zbl 0067.23603
[9]Biot, M., Theory of finite deformations of porous solids, Indiana Univ. Math. J., 21, 597-620 (1972) ·Zbl 0229.76065
[10]Boley, B. A.; Weiner, J. H., Theory of Thermal Stresses (1960), Wiley: Wiley New York ·Zbl 0095.18407
[11]Booker, J. R., A numerical method for the solution of Biot’s consolidation theory, Quart. J. Mech. Appl., 26, 457-470 (1972) ·Zbl 0267.65085
[12]Carlson, D. E., Linear Thermoelasticity, Handbuch der Physik (1972), Springer-Verlag: Springer-Verlag New York ·Zbl 0277.73001
[13]Carroll, R. W.; Showalter, R. E., Singular and Degenerate Cauchy Problems (1976), Academic Press: Academic Press New York
[14]Chadwick, P., Thermoelaticity: The Dynamic Theory. Thermoelaticity: The Dynamic Theory, Progress in Solid Mechanics (1960), North-Holland: North-Holland Amsterdam
[15]Ciarlet, Ph. G., Mathematical Elasticity. Vol. I. Three-Dimensional Elasticity (1988), North-Holland: North-Holland Amsterdam ·Zbl 0648.73014
[16]Dafermos, C. M., On the existence and asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29, 241-271 (1968) ·Zbl 0183.37701
[17]Day, W. A., Heat Conduction within Linear Thermoelasticity (1985), Springer-Verlag: Springer-Verlag New York ·Zbl 0577.73009
[18]Esham, B. F.; Weinacht, R. J., Singular perturbations and the coupled/quasi-static approximation in linear thermoelasticity, SIAM J. Math. Anal., 26, 1521-1536 (1994) ·Zbl 0807.35009
[19]Fichera, G., Existence Theorems in Elasticity, Handbuch der Physik (1972), Springer-Verlag: Springer-Verlag New York ·Zbl 0317.73008
[20]Fichera, G., Uniqueness, existence and estimate of the solution in the dynamical problem of thermodiffusion in an elastic solid, Arch. Mech. Stosowanej, 26, 903-920 (1974) ·Zbl 0297.35015
[21]Kato, T., Perturbation Theory for Linear Operators (1966), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0148.12601
[22]Kupradze, V. D., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (1979), North-Holland: North-Holland Amsterdam ·Zbl 0421.73009
[23]Murad, M. A.; Cushman, J. H., Multiscale flow and deformation in hydrophilic swelling porous media, Internat. J. Engrg. Sci., 34, 313-338 (1996) ·Zbl 0900.76622
[24]Murad, M. A.; Loula, A. F.D., Improved accuracy in finite-element analysis of Biot’s consolidation problem, Comput. Methods Appl. Mech. Engrg., 95, 359-382 (1992) ·Zbl 0760.73068
[25]Murad, M. A.; Loula, A. F.D., Stability and convergence of finite-element approximations of Biot’s consolidation problem, Internat. J. Numer. Meth. Engrg. (1993)
[26]Murad, M. A.; Thomee, V.; Loula, A. F.D., Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem, SIAM J. Numer. Anal., 33, 1065-1083 (1996) ·Zbl 0854.76053
[27]Nowacki, W., Thermoelaticity (1962), Addison-Wesley: Addison-Wesley Reading
[28]Reed, M. B., An investigation of numerical errors in the analysis of consolidation by finite elements, Internat. J. Anal. Methods Geomech., 8, 243-257 (1984) ·Zbl 0536.73089
[29]Sandhu, R. S.; Liu, H.; Singh, K. J., Numerical performance of some finite element schemes for analysis of seepage in porouos elastic media, Internat. J. Anal. Methods Geomech., 1, 177-194 (1977) ·Zbl 0366.65049
[30]Shi, P.; Shillor, M., Existence of a solution to the \(N\) dimensional problem of thermoelastic contact, Comm. Partial Differential Equations, 17, 1597-1618 (1992) ·Zbl 0765.73059
[31]Shi, P.; Xu, Yongzhi, Decoupling of the quasistatic system of thermoelasticity on the unit disk, J. Elasticity, 31, 209-218 (1993) ·Zbl 0784.73011
[32]R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, 1977; Electronic Monographs in Differential Equations, San Marcos, TX, 1994, available at, http://ejde.math.swt.edu/mtoc.html; R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, 1977; Electronic Monographs in Differential Equations, San Marcos, TX, 1994, available at, http://ejde.math.swt.edu/mtoc.html ·Zbl 0364.35001
[33]Showalter, R. E., A Green’s formula for weak solutions of variational problems, (Lakshmikantham, V., Applied Nonlinear Analysis (1979), Academic Press: Academic Press New York), 381-387 ·Zbl 0466.35019
[34]Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations (1996), Amer. Math. Soc: Amer. Math. Soc Providence ·Zbl 0870.35004
[35]Temam, R., Navier-Stokes Equations (1979), North-Holland: North-Holland Amsterdam ·Zbl 0454.35073
[36]von Terzaghi, K., Theoretical Soil Mechanics (1943), Wiley: Wiley New York
[37]Valliappan, S.; Khalili-Naghadeh, N., Flow through fissured porous media with deformable matrix, Internat. J. Numer. Methods Engrg., 29, 1079-1094 (1990) ·Zbl 0704.73082
[38]Wilson, R. K.; Aifantis, E. C., On the theory of consolidation with double porosity, Internat. J. Engrg. Sci., 20, 1009-1035 (1982) ·Zbl 0493.76094
[39]Xu, Xiangsheng, The \(N\)-dimensional quasistatic problem of thermoelastic contact with Barber’s heat exchange conditions, Adv. Math. Sci. Appl., 6, 559-587 (1996) ·Zbl 0868.35128
[40]Yoloo, Y.; Yamagata, K.; Nagoaka, H., Finite element method applied to Biot’s consolidation theory, Soils Foundations, 11, 29-46 (1971)
[41]Zenisek, A., The existence and uniqueness theorem in Biot’s consolidation theory, Appl. Mat., 29, 194-211 (1984) ·Zbl 0557.35005
[42]Zenisek, A., Finite element methods of coupled thermoelasticity and coupled consolidation of clay, RAIRO Anal. Numer., 18, 183-204 (1984) ·Zbl 0539.73005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp