Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A new ellipsoid associated with convex bodies.(English)Zbl 0974.52008

The Legendre ellipsoid \(\Gamma_2K\) of a star body \(K\) in Euclidean space \(\mathbb{R}^n\) can be defined by its support function \[h_{\Gamma_2 K}(u):= \left({n+2 \over V(K)}\int_K (u\cdot x)^2 dx\right)^{1\over 2}\] for \(u\in S^{n-1}\). The authors propose a new ellipsoid, \(\Gamma_{-2}K\), which can be defined by its radial function \[\rho_{\Gamma_{-2} K}(u):= \left({1\over V(K)} \int_{S^{n-1}} (u\cdot v)^2 h_K^{-1} (v)dS_K(v) \right)^{-{1\over 2}}\] for \(u\in S^{n-1}\); here \(S_K\) is the classical surface area measure of \(K\). The motivation comes from Lutwak’s dual Brunn-Minkowski theory: it is remarked that the Legendre ellipsoid \(\Gamma_2K\) properly belongs to that theory, while \(\Gamma_{-2}K\) is its dual counterpart in the classical Brunn-Minkowski theory.
The authors present a neat parallel development of the known inequalities for the Legendre ellipsoid \(\Gamma_2K\) (with new proofs) and their newly established counterparts for the ellipsoid \(\Gamma_{-2}K\). Among the interesting series of volume inequalities for the new ellipsoid there is, surprisingly, even one for which the dual classical counterpart is still an open problem.

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry

Cite

References:

[1]K. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), 351–359. ·Zbl 0694.46010 ·doi:10.1112/jlms/s2-44.2.351
[2]F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335–361. ·Zbl 0901.26010 ·doi:10.1007/s002220050267
[3]W. Blaschke, Affine Geometrie XIV, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math. –.Phys. Kl. 70 (1918), 72–75.
[4]J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), 1467–1476. JSTOR: ·Zbl 0621.42015 ·doi:10.2307/2374532
[5]–. –. –. –., “On the distribution of polynomials on high-dimensional convex sets” in Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1469 , Springer, Berlin, 1991, 127–137. ·Zbl 0773.46013 ·doi:10.1007/BFb0089219
[6]J. Bourgain and V. Milman, New volume ratio properties for convex symmetric bodies in \(R^n\), Invent. Math. 88 (1987), 319–340. ·Zbl 0617.52006 ·doi:10.1007/BF01388911
[7]R. Clack, Minkowski surface area under affine transformations, Mathematika 37 (1990), 232–238. ·Zbl 0696.52003 ·doi:10.1112/S0025579300012948
[8]S. Dar, “Remarks on Bourgain’s problem on slicing of convex bodies” in Geometric Aspects of Functional Analysis (Israel, 1992–1994.), Oper. Theory Adv. Appl. 77 (1995), 61–66. ·Zbl 0834.52007
[9]W. J. Firey, \(p\)-means of convex bodies, Math. Scand. 10 (1962), 17–24. ·Zbl 0188.27303
[10]R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), 435–447. JSTOR: ·Zbl 0826.52010 ·doi:10.2307/2118606
[11]——–, Geometric Tomography, Encyclopedia Math. Appl. 58 , Cambridge Univ. Press, Cambridge, 1995.
[12]A. Giannopoulos and M. Papadimitrakis, Isotropic surface area measures, Mathematika 46 (1999), 1–13. ·Zbl 0960.52009 ·doi:10.1112/S0025579300007518
[13]F. John, Polar correspondence with respect to a convex region, Duke Math. J. 3 (1937), 355–369. ·Zbl 0017.03701 ·doi:10.1215/S0012-7094-37-00327-2
[14]M. Junge, Hyperplane conjecture for quotient spaces of \(L_\!p\), Forum Math. 6 (1994), 617–635. ·Zbl 0809.52009 ·doi:10.1515/form.1994.6.617
[15]K. Leichtwei\(\ss\), Affine Geometry of Convex Bodies, J. A. Barth, Heidelberg, 1998.
[16]J. Lindenstrauss and V. D. Milman, “The local theory of normed spaces and its applications to convexity” in Handbook of Convex Geometry, ed. P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, 1149–1220. ·Zbl 0791.52003
[17]E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. (3) 60 (1990), 365–391. ·Zbl 0703.52005 ·doi:10.1112/plms/s3-60.2.365
[18]–. –. –. –., The Brunn-Minkowski-Firey theory, I: Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), 131–150. ·Zbl 0788.52007
[19]–. –. –. –., The Brunn-Minkowski-Firey theory, II: Affine and geominimal surface areas, Adv. Math. 118 (1996), 244–294. ·Zbl 0853.52005 ·doi:10.1006/aima.1996.0022
[20]V. D. Milman and A. Pajor, Cas limites dans des inégalités du type de Khinchine et applications géométriques, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 91–96. ·Zbl 0657.46009
[21]——–, “Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space” in Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376 , Springer, Berlin, 1989, 64\hs –104. ·Zbl 0679.46012 ·doi:10.1007/BFb0090049
[22]C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961), 1535–1547. ·Zbl 0103.15604 ·doi:10.2140/pjm.1961.11.1535
[23]——–, Surface area of a convex body under affine transformations, Proc. Amer. Math. Soc. 12 (1961), 824\hs–828. JSTOR: ·Zbl 0101.40304 ·doi:10.2307/2034885
[24]R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl. 44 , Cambridge Univ. Press, Cambridge, 1993. ·Zbl 0798.52001
[25]A. C. Thompson, Minkowski Geometry, Encyclopedia Math. Appl. 63 , Cambridge Univ. Press, Cambridge, 1996.
[26]G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), 777–801. JSTOR: ·Zbl 0812.52005 ·doi:10.2307/2154998
[27]–. –. –. –., Intersection bodies and the Busemann-Petty inequalities in \(\mathbb R^4\), Ann. of Math. (2) 140 (1994), 331–346. JSTOR: ·Zbl 0826.52011 ·doi:10.2307/2118603
[28]–. –. –. –., A positive solution to the Busemann-Petty problem in \(\mathbb R^4\), Ann. of Math. (2) 149 (1999), 535–543. JSTOR: ·Zbl 0937.52004 ·doi:10.2307/120974
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp