52A40 | Inequalities and extremum problems involving convexity in convex geometry |
[1] | K. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), 351–359. ·Zbl 0694.46010 ·doi:10.1112/jlms/s2-44.2.351 |
[2] | F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335–361. ·Zbl 0901.26010 ·doi:10.1007/s002220050267 |
[3] | W. Blaschke, Affine Geometrie XIV, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math. –.Phys. Kl. 70 (1918), 72–75. |
[4] | J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), 1467–1476. JSTOR: ·Zbl 0621.42015 ·doi:10.2307/2374532 |
[5] | –. –. –. –., “On the distribution of polynomials on high-dimensional convex sets” in Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1469 , Springer, Berlin, 1991, 127–137. ·Zbl 0773.46013 ·doi:10.1007/BFb0089219 |
[6] | J. Bourgain and V. Milman, New volume ratio properties for convex symmetric bodies in \(R^n\), Invent. Math. 88 (1987), 319–340. ·Zbl 0617.52006 ·doi:10.1007/BF01388911 |
[7] | R. Clack, Minkowski surface area under affine transformations, Mathematika 37 (1990), 232–238. ·Zbl 0696.52003 ·doi:10.1112/S0025579300012948 |
[8] | S. Dar, “Remarks on Bourgain’s problem on slicing of convex bodies” in Geometric Aspects of Functional Analysis (Israel, 1992–1994.), Oper. Theory Adv. Appl. 77 (1995), 61–66. ·Zbl 0834.52007 |
[9] | W. J. Firey, \(p\)-means of convex bodies, Math. Scand. 10 (1962), 17–24. ·Zbl 0188.27303 |
[10] | R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), 435–447. JSTOR: ·Zbl 0826.52010 ·doi:10.2307/2118606 |
[11] | ——–, Geometric Tomography, Encyclopedia Math. Appl. 58 , Cambridge Univ. Press, Cambridge, 1995. |
[12] | A. Giannopoulos and M. Papadimitrakis, Isotropic surface area measures, Mathematika 46 (1999), 1–13. ·Zbl 0960.52009 ·doi:10.1112/S0025579300007518 |
[13] | F. John, Polar correspondence with respect to a convex region, Duke Math. J. 3 (1937), 355–369. ·Zbl 0017.03701 ·doi:10.1215/S0012-7094-37-00327-2 |
[14] | M. Junge, Hyperplane conjecture for quotient spaces of \(L_\!p\), Forum Math. 6 (1994), 617–635. ·Zbl 0809.52009 ·doi:10.1515/form.1994.6.617 |
[15] | K. Leichtwei\(\ss\), Affine Geometry of Convex Bodies, J. A. Barth, Heidelberg, 1998. |
[16] | J. Lindenstrauss and V. D. Milman, “The local theory of normed spaces and its applications to convexity” in Handbook of Convex Geometry, ed. P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, 1149–1220. ·Zbl 0791.52003 |
[17] | E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc. (3) 60 (1990), 365–391. ·Zbl 0703.52005 ·doi:10.1112/plms/s3-60.2.365 |
[18] | –. –. –. –., The Brunn-Minkowski-Firey theory, I: Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), 131–150. ·Zbl 0788.52007 |
[19] | –. –. –. –., The Brunn-Minkowski-Firey theory, II: Affine and geominimal surface areas, Adv. Math. 118 (1996), 244–294. ·Zbl 0853.52005 ·doi:10.1006/aima.1996.0022 |
[20] | V. D. Milman and A. Pajor, Cas limites dans des inégalités du type de Khinchine et applications géométriques, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 91–96. ·Zbl 0657.46009 |
[21] | ——–, “Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space” in Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376 , Springer, Berlin, 1989, 64\hs –104. ·Zbl 0679.46012 ·doi:10.1007/BFb0090049 |
[22] | C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961), 1535–1547. ·Zbl 0103.15604 ·doi:10.2140/pjm.1961.11.1535 |
[23] | ——–, Surface area of a convex body under affine transformations, Proc. Amer. Math. Soc. 12 (1961), 824\hs–828. JSTOR: ·Zbl 0101.40304 ·doi:10.2307/2034885 |
[24] | R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl. 44 , Cambridge Univ. Press, Cambridge, 1993. ·Zbl 0798.52001 |
[25] | A. C. Thompson, Minkowski Geometry, Encyclopedia Math. Appl. 63 , Cambridge Univ. Press, Cambridge, 1996. |
[26] | G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), 777–801. JSTOR: ·Zbl 0812.52005 ·doi:10.2307/2154998 |
[27] | –. –. –. –., Intersection bodies and the Busemann-Petty inequalities in \(\mathbb R^4\), Ann. of Math. (2) 140 (1994), 331–346. JSTOR: ·Zbl 0826.52011 ·doi:10.2307/2118603 |
[28] | –. –. –. –., A positive solution to the Busemann-Petty problem in \(\mathbb R^4\), Ann. of Math. (2) 149 (1999), 535–543. JSTOR: ·Zbl 0937.52004 ·doi:10.2307/120974 |