[1] | Harlow, F. H.; Welch, J. E., Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, 8, 2182 (1965) ·Zbl 1180.76043 |
[2] | Lilly, D. K., On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems, Mon. Weather Rev., 93, 11 (1965) |
[3] | J. B. Perot, Direct numerical simulation of turbulence on the Connection Machine, Parallel Computational Fluid Dynamics ‘92, edited by, R. B. Pelz, A. Ecer, and J. Hauser, North-Holland, Amsterdam, 1993.; J. B. Perot, Direct numerical simulation of turbulence on the Connection Machine, Parallel Computational Fluid Dynamics ‘92, edited by, R. B. Pelz, A. Ecer, and J. Hauser, North-Holland, Amsterdam, 1993. |
[4] | Na, Y.; Moin, P., Direct numerical simulation of turbulent boundary layers with adverse pressure gradient and separation, Report TF-28 (1996) ·Zbl 1083.76526 |
[5] | Le, H.; Moin, P.; Kim, J., Direct numerical simulation of turbulent flow over a backward facing step, J. Fluid Mech., 330, 349 (1997) ·Zbl 0900.76367 |
[6] | Akselvoll, K.; Moin, P., Large eddy simulation of turbulent confined coannular jets, J. Fluid Mech., 315, 387 (1996) ·Zbl 0875.76444 |
[7] | Mittal, R.; Moin, P., Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows, AIAA J., 35, 1415 (1998) ·Zbl 0900.76336 |
[8] | Apanovich, Y. V.; Lyumkis, E. D., Difference schemes for the Navier-Stokes equations on a net consisting of Dirichlet cells, Comput. Maths. Math. Phys., 28, 57 (1988) ·Zbl 0672.76033 |
[9] | Jansen, K., Large-eddy simulation of flow around a NACA 4412 airfoil using unstructured grids, Center for Turbulence Research Annual Research Briefs, 225 (1996) |
[10] | Hall, C. A.; Peterson, J. S.; Porsching, T. A.; Sledge, F. R., The dual variable method for finite element discretizations of Navier/Stokes equations, Int. J. Numer. Methods Eng., 21, 883 (1985) ·Zbl 0587.76045 |
[11] | R. A. Nicolaides, Direct discretization of planar div-curl problems. ICASE Report 89-76, 1989.; R. A. Nicolaides, Direct discretization of planar div-curl problems. ICASE Report 89-76, 1989. |
[12] | R. A. Nicolaides, The covolume approach to computing incompressible flow, Incompressible Computational Fluid Dynamics, edited by, M. D. Gunzburger and R. A. Nicolaides, Cambridge Univ. Press, Cambridge, UK, 1993, p, 295.; R. A. Nicolaides, The covolume approach to computing incompressible flow, Incompressible Computational Fluid Dynamics, edited by, M. D. Gunzburger and R. A. Nicolaides, Cambridge Univ. Press, Cambridge, UK, 1993, p, 295. ·Zbl 1189.76392 |
[13] | Nicolaides, R. A.; Wu, X., Covolume Solutions of Three-Dimensional Div-Curl Equations (1995) |
[14] | Bertagnolio, F.; Daube, O., Solution of the div-curl problem in generalized curvilinear coordinates, J. Comput. Phys., 138, 121 (1997) ·Zbl 0888.65115 |
[15] | Hyman, J. M.; Shashkov, M., The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. Anal., 36, 788 (1999) ·Zbl 0972.65077 |
[16] | Hyman, J. M.; Shashkov, M., Mimetic discretizations of Maxwells equations, J. Comput. Phys., 151, 881 (1999) ·Zbl 0956.78015 |
[17] | Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143, 90 (1998) ·Zbl 0932.76054 |
[18] | Hyman, J. M.; Knapp, R. J.; Scovel, J. C., High order finite volume approximations of differential operators on nonuniform grids, Physica D, 60, 112 (1992) ·Zbl 0790.65089 |
[19] | Hall, C. A.; Cavendish, J. C.; Frey, W. H., The dual variable method for solving fluid flow difference equations on Delaunay triangulations, Comput. Fluids, 20, 145 (1991) ·Zbl 0729.76047 |
[20] | A. Lippolis, G. Vacca, and, B. Grossman, Incompressible Navier-Stokes solutions on unstructured grids using aco-volume technique, in, 13th International Conference on Numerical Methods in Fluid Dynamics, edited by, M. Napolitano and F. Sabetta, Springer-Verlag, Amsterdam, 1992, p, 270.; A. Lippolis, G. Vacca, and, B. Grossman, Incompressible Navier-Stokes solutions on unstructured grids using aco-volume technique, in, 13th International Conference on Numerical Methods in Fluid Dynamics, edited by, M. Napolitano and F. Sabetta, Springer-Verlag, Amsterdam, 1992, p, 270. |
[21] | Cavendish, J. C.; Hall, C. A.; Porsching, T. A., A complementary volume approach for modelling three-dimensional Navier-Stokes equations using dual Delaunay/Voronoi tessellations, Int. J. Numer. Methods Heat Fluid Flow, 4, 329 (1994) ·Zbl 0815.76041 |
[22] | R. A. Nicolaides, The covolume approach to computing incompressible flows, in, Algorithmic Trends in Computational Fluid Dynamics, edited by, M. Y. Hussaini, A. Kumar, and M. D. Salas, Springer-Verlag, Amsterdam, 1993.; R. A. Nicolaides, The covolume approach to computing incompressible flows, in, Algorithmic Trends in Computational Fluid Dynamics, edited by, M. Y. Hussaini, A. Kumar, and M. D. Salas, Springer-Verlag, Amsterdam, 1993. ·Zbl 1189.76392 |
[23] | Chou, S. H., Analysis and convergence of a covolume method for the generalized Stokes problem, Math. Comput., 66, 85 (1997) ·Zbl 0854.65091 |
[24] | Shashkov, M.; Swartz, B.; Wendroff, B., Local reconstructuin of a vector field from its normal components on the faces of grid cells, J. Comput. Phys., 139, 406 (1998) ·Zbl 0908.65112 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.