Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Symmetric spaces, Kähler geometry and Hamiltonian dynamics.(English)Zbl 0972.53025

Eliashberg, Ya. (ed.) et al., Northern California symplectic geometry seminar. Providence, RI: American Mathematical Society. Transl., Ser. 2, Am. Math. Soc. 196(45), 13-33 (1999).
Let \(V\) be a compact complex manifold of dimension \(n\) which admits a Kähler metric \(\omega_0\). Any other Kähler metric cohomologous to \(\omega_0\) can be expressed via a Kähler potential. Define \(\mathcal H\) to be the space of Kähler potentials, \({\mathcal H}=\{\phi\in C^{\infty}(V):\omega_{\phi}=\omega_0+i\overline{\partial}\partial\phi>0\}\). Each Kähler potential \(\phi\in\mathcal H\) gives a measure \(d\mu_{\phi}=\frac{1}{n!}\omega^n_{\phi}\) on \(V\). Define a Riemannian metric on the infinite dimensional manifold \(\mathcal H\) using the \(L^2\)-norms furnished by theses measures (a tangent vector \(\delta\phi\) to \(\mathcal H\) at a point \(\phi\in\mathcal H\) is just a function on \(V\)) and set \(\|\delta\phi\|^2_{\phi}=\int_V (\delta\phi)^2 d\mu_{\phi}\). This is the main result of the paper: The Riemannian manifold \(\mathcal H\) is an infinite dimensional symmetric space; it admits a Levi-Civita connection whose curvature is covariant constant. At a point \(\phi\in\mathcal H\) the curvature is given by \(R_{\phi}(\delta_1\phi,\delta_2\phi)\delta_3\phi=-\frac 14\{\{\delta_1\phi,\delta_2\phi\}_{\phi},\delta_3\phi\}_{\phi}\), where \(\{.,.\}_{\phi}\) is the Poisson bracket on \(C^{\infty}(V)\) of the symplectic form \(\omega_{\phi}\). The author presents two proofs of this theorem. Moreover, it is investigated the geometry of the space \(\mathcal H\), in particular the geodesic equation. A number of conjectures and questions is stated and it is outlined the relevance of these ideas to well-established problems in Kähler geometry.
The theory is an infinite dimensional analogy of the ordinary symmetric spaces of finite dimension.
For the entire collection see [Zbl 0930.00050].

MSC:

53C35 Differential geometry of symmetric spaces
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
53D30 Symplectic structures of moduli spaces
53C55 Global differential geometry of Hermitian and Kählerian manifolds
53C22 Geodesics in global differential geometry
58D27 Moduli problems for differential geometric structures
58E11 Critical metrics
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp