Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Well-posedness for the Navier-Stokes equations.(English)Zbl 0972.35084

The existence of a global solution to the Cauchy problem for the Navier-Stokes equations \[\begin{aligned} &\frac{\partial v}{\partial t}+(v\cdot\nabla)v-\Delta v+\nabla p=0,\qquad \text{div }v=0 \quad \text{in } \mathbb{R}^n\times \mathbb{R}^+\\ &v(x,0)=v_0(x), \qquad x\in \mathbb{R}^n \end{aligned} \tag{1}\] is discussed. It is proved that if \(\text{div }v=0\) and if the norm of \(v_0\) \[\|v_0\|_1=\sup_{x,R}\Biggl[\text{mes}^{-1}(B(x,R))\int_{Q(x,R)} |w(y,t)|^2 dy dt\Biggr]^{\frac 12}\] is sufficiently small, then the problem (1) has a unique small global solution in the space \(X\) with a norm \[\|v_0\|_X=\sup_{t>0}\sqrt{t}\|v(\cdot,t)\|_{L^{\infty}(\mathbb{R}^n)}+ \Biggl(\sup_{x,R} \text{mes}^{-1}(B(x,R))\int_{Q(x,R)} |u(y,t)|^2 dy dt\Biggr)^{\frac 12}.\] Here \(Q(x,R)=B(x,R)\times(0,R^2)\) and \(w(x,t)\) is the solution to the Cauchy problem to the heat equation \[ \frac{\partial w}{\partial t}-\Delta v,\quad w(x,0)=v_0.\] A similar result of existence of a local solution is obtained, too. These results are more general than earlier results.

MSC:

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35A01 Existence problems for PDEs: global existence, local existence, non-existence

Cite

References:

[1]Ben-Artzi, M., Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal., 128, 329-358 (1994) ·Zbl 0837.35110
[2]Brezis, H., Remarks on the preceding paper “Global Solutions of Two-Dimensional Navier-Stokes and Euler Equations”, Arch. Rational Mech. Anal., 128, 359-360 (1994) ·Zbl 0837.35112
[3]Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35, 771-831 (1982) ·Zbl 0509.35067
[4]Cannone, M., A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13, 515-541 (1997) ·Zbl 0897.35061
[5]Giga, Y.; Miyakawa, T., Navier-Stokes flow in \(R^3\) with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14, 577-618 (1989) ·Zbl 0681.35072
[6]Giga, Y.; Miyakawa, T.; Osada, H., Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104, 223-250 (1988) ·Zbl 0666.76052
[7]Iftimie, D., The resolution of the Navier-Stokes equations in anisotropic spaces, Rev. Mat. Iberoam., 15, 1-36 (1999) ·Zbl 0923.35119
[8]Kato, T., Strong\(L^p\)-solutions of the Navier-Stokes equation in \(R^m \), with applications to weak solutions, Math. Z., 187, 471-480 (1984) ·Zbl 0545.35073
[9]Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41, 891-907 (1988) ·Zbl 0671.35066
[10]Lin, F., A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51, 241-257 (1998) ·Zbl 0958.35102
[11]Lions, P.-L.; Masmoudi, N., Unicité des solutions faibles de Navier-Stokes dans\(L^N}(Ω)\), C. R. Acad. Sci. Paris Ser. I Math., 327, 491-496 (1998) ·Zbl 0990.35114
[12]Planchon, F., Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in \(\textbf{R}^3\), Ann. Inst. Henri Poincare, Anal. Non Lineaire, 13, 319-336 (1996) ·Zbl 0865.35101
[13]Stein, E. M., Harmonic Analysis. Harmonic Analysis, Princeton Mathematical Series, 43 (1993), Princeton University Press: Princeton University Press Princeton ·Zbl 0821.42001
[14]Struwe, M., On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41, 437-458 (1988) ·Zbl 0632.76034
[15]Taylor, M., Analysis on Morrey spaces and applications to Navier-Stokes equation, Comm. Partial Differential Equations, 17, 1407-1456 (1992) ·Zbl 0771.35047
[16]Wu, S., Analytic dependence of Riemann mappings for bounded domains and minimal surfaces, Comm. Pure Appl. Math., 46, 1303-1326 (1993) ·Zbl 0818.30005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp