Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Mechanical integrators derived from a discrete variational principle.(English)Zbl 0963.70507

Summary: Many numerical integrators for mechanical system simulation are created by using discrete algorithms to approximate the continuous equations of motion. In this paper, we present a procedure to construct time-stepping algorithms that approximate the flow of continuous ODEs for mechanical systems by discretizing Hamilton’s principle rather than the equations of motion. The discrete equations share similarities to the continuous equations by preserving invariants, including the symplectic form and the momentum map. We first present a formulation of discrete mechanics along with a discrete variational principle. We then show that the resulting equations of motion preserve the symplectic form, and that this formulation of mechanics leads to conservation laws from a discrete version of Noether’s theorem. We then use the discrete mechanics formulation to develop a procedure for constructing symplectic-momentum mechanical integrators for Lagrangian systems with holonomic constraints. We apply the construction procedure to the rigid body and the double spherical pendulum to demonstrate numerical properties of the integrators.

MSC:

70-08 Computational methods for problems pertaining to mechanics of particles and systems
70H25 Hamilton’s principle
65L99 Numerical methods for ordinary differential equations
70E15 Free motion of a rigid body
70F20 Holonomic systems related to the dynamics of a system of particles
70H03 Lagrange’s equations

Software:

Mathematica

Cite

References:

[1]Anderson, H. C., Rattle: A velocity version of the shake algorithm for molecular dynamics calculations, J. Comput. Phys., 52, 24-34 (1983) ·Zbl 0513.65052
[2]Armero, F.; Simo, J. C., Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 131, 1-2, 41-90 (1996) ·Zbl 0888.76042
[3]Baez, J. C.; Gilliam, J. W., An algebraic approach to discrete mechanics (1995)
[4]Barth, E.; Leimkuhler, B., A semi-explicit, variable-stepsize integrator for constrained dynamics, (Mathematics Department Preprint Series (1996), University of Kansas) ·Zbl 0895.70004
[5]Barth, E.; Leimkuhler, B., Symplectic methods for conservative multibody systems, Fields Institute Commun., 10, 25-43 (1996) ·Zbl 0895.70004
[6]Benettin, G.; Giorgilli, A., On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms, J. Statis. Phys., 74, 5-6, 1117-1143 (1994) ·Zbl 0842.58020
[7]Bloch, A. M.; Krishnaprasad, P. S.; Marsden, J. E.; Murray, R. M., Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal. (1996), to appear ·Zbl 0886.70014
[8]Channell, P.; Scovel, C., Symplectic integration of Hamiltonian systems, Nonlinearity, 3, 231-259 (1990) ·Zbl 0704.65052
[9]Chorin, A. J.; Hughes, T. J.R.; Marsden, J. E.; McCracken, M., Product formulas and numerical algorithms, Commun. Pure Appl. Math., 31, 205-256 (1978) ·Zbl 0358.65082
[10]Ge, Z.; Marsden, J. E., Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory, Phys. Lett. A, 133, 134-139 (1988) ·Zbl 1369.70038
[11]Gillilan, R. E.; Wilson, K. R., Shadowing, rare events, and rubber bands. A variational Verlet algorithm for molecular dynamics, J. Chem. Phys., 97, 3, 1757-1772 (1992)
[12]Gonzalez, O., Design and analysis of conserving integrators for nonlinear Hamiltonian systems with symmetry, (Ph.D. Thesis, (1996), Department of Mechanical Engineering, Stanford University)
[13]Gonzalez, O., Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. (1996), to appear ·Zbl 0866.58030
[14]Itoh, T.; Abe, K., Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 77, 85-102 (1988) ·Zbl 0656.70015
[15]Jay, L., Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, SIAM J. Numer. Anal., 33, 1, 368-387 (1996) ·Zbl 0903.65066
[16]Labudde, R. A.; Greenspan, D., Discrete mechanics — a general treatment, J. Comput. Phys., 15, 134-167 (1974) ·Zbl 0301.70006
[17]Labudde, R. A.; Greenspan, D., Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion — I. Motion of a single particle, Numer. Math., 25, 323-346 (1976) ·Zbl 0364.65066
[18]Labudde, R. A.; Greenspan, D., Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion — II. Motion of a system of particles, Numer. Math., 26, 1-16 (1976) ·Zbl 0382.65031
[19]Lambert, J. D., Numerical Methods for Ordinary Differential Systems (1991), Wiley: Wiley New York ·Zbl 0745.65049
[20]Leimkuhler, B.; Patrick, G., Symplectic integration on Riemannian manifolds, J. Nonlinear Sci., 6, 367-384 (1996) ·Zbl 0862.70009
[21]Leimkuhler, B. J.; Skeel, R. D., Symplectic numerical integrators in constrained Hamiltonian systems, J. Comput. Phys., 112, 117-125 (1994) ·Zbl 0817.65057
[22]Lewis, H. R.; Kostelec, P. J., The use of Hamilton’s principle to derive time-advance algorithms for ordinary differential equations, Comput. Phys. Commun. (1996), to appear ·Zbl 0921.65048
[23]Lewis, D.; Simo, J. C., Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlinear Sci., 4, 253-299 (1995) ·Zbl 0799.58069
[24]MacKay, R., Some aspects of the dynamics of Hamiltonian systems, (Broomhead, D. S.; Iserles, A., The Dynamics of Numerics and the Numeries of Dynamics (1992), Clarendon Press: Clarendon Press Oxford), 137-193 ·Zbl 0764.58009
[25]Maeda, S., Lagrangian formulation of discrete systems and concept of difference space, Math. Japon., 27, 3, 345-356 (1981) ·Zbl 0531.70020
[26]Marsden, J., (Lectures on Mechanics. Lectures on Mechanics, London Mathematical Society Lecture Note Series, Vol. 174 (1992), Cambridge University Press: Cambridge University Press Cambridge, UK) ·Zbl 0744.70004
[27]Marsden, J. E.; Patrick, G. W.; Shadwick, W. F., Integration Algorithms and Classical Mechanics, (Fields Institute Communications, Vol. 10 (1996), American Mathematical Society: American Mathematical Society Providence, RI) ·Zbl 0847.00055
[28]Marsden, J.; Ratiu, T., Introduction to Mechanics and Symmetry (1994), Springer: Springer New York ·Zbl 0811.70002
[29]Marsden, J. E.; Scheurle, J., Lagrangian reduction and the double spherical pendulum, ZAMP, 44, 1, 17-43 (1993) ·Zbl 0778.70016
[30]McLachlan, R. I.; Scovel, C., A survey of open problems in symplectic integration, Fields institute Commun., 10, 151-180 (1996) ·Zbl 0871.65058
[31]McLachlan, R. I.; Scovel, C., Equivariant constrained symplectic integration, J. Nonlinear Sci., 5, 233-256 (1995) ·Zbl 0836.58017
[32]Meiss, J. D., Symplectic maps, variational principles, and transport, Rev. Modern Phys., 64, 3, 795-848 (1992) ·Zbl 1160.37302
[33]Moser, J.; Veselov, A. P., Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys., 139, 2, 217-243 (1991) ·Zbl 0754.58017
[34]Murray, R.; Li, Z.; Sastry, S., A Mathematical Introduction to Robotic Manipulation (1994), CRC Press: CRC Press Boca Raton, FL ·Zbl 0858.70001
[35]Ortiz, M., A note on energy conservation and stability of nonlinear time-stepping algorithms, Computers and Structures, 24, 1, 167-168 (1986)
[36]Reich, S., Symplectic integration of constrained Hamiltonian systems by Runge-Kutta methods, (Technical Report 93-13 (1993), University of British Columbia)
[37]Reich, S., Momentum preserving symplectic integrations, Physica D, 76, 4, 375-383 (1994) ·Zbl 0818.58020
[38]Reich, S., Symplectic integration of constrained Hamiltonian systems by composition methods, SIAM J. Numer. Anal., 33, 475-491 (1996) ·Zbl 0852.65060
[39]Reich, S., Symplectic integrators for systems of rigid bodies, Fields Institute Commun., 10, 181-191 (1996) ·Zbl 0872.65061
[40]Ryckaert, J.; Ciccotti, G.; Berendsen, H., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of \(n\)-alkanes, J. Comput. Phys., 23, 327-341 (1977)
[41]Sanz-Serna, J. M., Symplectic integrators for Hamiltonian problems: An overview, Acta Numerica, 1, 243-286 (1991) ·Zbl 0762.65043
[42]Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamiltonian Problems (1994), Chapman and Hall: Chapman and Hall London ·Zbl 0816.65042
[43]Scheck, F. A., Mechanics: From Newton’s Laws to Deterministic Chaos (1990), Springer: Springer Berlin ·Zbl 0727.70001
[44]Shibberu, Y., Time-discretization of Hamiltonian systems, Compu. Math. Appl., 28, 10-12, 123-145 (1994) ·Zbl 0810.65069
[45]Simo, J. C.; Gonzalez, O., Assessment of energy-momentum and symplectic schemes for stiff dynamical systems, (ASME Winter Ann. Meeting. ASME Winter Ann. Meeting, New Orleans (1993)) ·Zbl 0900.70013
[46]Simo, J. C.; Tarnow, N., The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP, 43, 757-792 (1992) ·Zbl 0758.73001
[47]Simo, J. C.; Wong, K. K., Int. J. Numer. Methods Eng., 33, 1321-1323 (1992) ·Zbl 0825.73960
[48]Verlet, L., Computer experiments on classical fluids, Phys. Rev., 159, 98-103 (1967)
[49]Veselov, A. P., Integrable discrete-time systems and difference operators, Funkts. Anal. Prilozhen, 22, 2, 1-13 (1988) ·Zbl 0661.58012
[50]Veselov, A. P., Integrable Lagrangian correspondences and the factorization of matrix polynomials, Funkts. Anal. Prilozhen., 25, 2, 38-49 (1991) ·Zbl 0731.58034
[51]Wendlandt, J. M., Pattern evocation and energy-momentum integration of the double spherical pendulum, (M.A. Thesis (1995), Department of Mathematics, University of California at Berkeley), CPAM-656
[52]Wendlandt, J. M.; Sastry, S. S., Recursive workspace control of multibody systems: A planar biped example, (IEEE Control and Decision Conf.. IEEE Control and Decision Conf., Kobe, Japan (1996))
[53]Wisdom, J.; Holman, M., Symplectic maps for the \(n\) body problem, Astronom. J., 102, 4, 1528-1538 (1991)
[54]Wolfram, S., Mathematica: A System for Doing Mathematics by Computer (1991), Addison-Wesley: Addison-Wesley RedWood City ·Zbl 0812.68063
[55]Yoshida, H., Construction of higher order symplectic integrators, Phys. Lett. A, 150, 262-268 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp