[1] | Anderson, H. C., Rattle: A velocity version of the shake algorithm for molecular dynamics calculations, J. Comput. Phys., 52, 24-34 (1983) ·Zbl 0513.65052 |
[2] | Armero, F.; Simo, J. C., Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 131, 1-2, 41-90 (1996) ·Zbl 0888.76042 |
[3] | Baez, J. C.; Gilliam, J. W., An algebraic approach to discrete mechanics (1995) |
[4] | Barth, E.; Leimkuhler, B., A semi-explicit, variable-stepsize integrator for constrained dynamics, (Mathematics Department Preprint Series (1996), University of Kansas) ·Zbl 0895.70004 |
[5] | Barth, E.; Leimkuhler, B., Symplectic methods for conservative multibody systems, Fields Institute Commun., 10, 25-43 (1996) ·Zbl 0895.70004 |
[6] | Benettin, G.; Giorgilli, A., On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms, J. Statis. Phys., 74, 5-6, 1117-1143 (1994) ·Zbl 0842.58020 |
[7] | Bloch, A. M.; Krishnaprasad, P. S.; Marsden, J. E.; Murray, R. M., Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal. (1996), to appear ·Zbl 0886.70014 |
[8] | Channell, P.; Scovel, C., Symplectic integration of Hamiltonian systems, Nonlinearity, 3, 231-259 (1990) ·Zbl 0704.65052 |
[9] | Chorin, A. J.; Hughes, T. J.R.; Marsden, J. E.; McCracken, M., Product formulas and numerical algorithms, Commun. Pure Appl. Math., 31, 205-256 (1978) ·Zbl 0358.65082 |
[10] | Ge, Z.; Marsden, J. E., Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory, Phys. Lett. A, 133, 134-139 (1988) ·Zbl 1369.70038 |
[11] | Gillilan, R. E.; Wilson, K. R., Shadowing, rare events, and rubber bands. A variational Verlet algorithm for molecular dynamics, J. Chem. Phys., 97, 3, 1757-1772 (1992) |
[12] | Gonzalez, O., Design and analysis of conserving integrators for nonlinear Hamiltonian systems with symmetry, (Ph.D. Thesis, (1996), Department of Mechanical Engineering, Stanford University) |
[13] | Gonzalez, O., Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. (1996), to appear ·Zbl 0866.58030 |
[14] | Itoh, T.; Abe, K., Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 77, 85-102 (1988) ·Zbl 0656.70015 |
[15] | Jay, L., Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, SIAM J. Numer. Anal., 33, 1, 368-387 (1996) ·Zbl 0903.65066 |
[16] | Labudde, R. A.; Greenspan, D., Discrete mechanics — a general treatment, J. Comput. Phys., 15, 134-167 (1974) ·Zbl 0301.70006 |
[17] | Labudde, R. A.; Greenspan, D., Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion — I. Motion of a single particle, Numer. Math., 25, 323-346 (1976) ·Zbl 0364.65066 |
[18] | Labudde, R. A.; Greenspan, D., Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion — II. Motion of a system of particles, Numer. Math., 26, 1-16 (1976) ·Zbl 0382.65031 |
[19] | Lambert, J. D., Numerical Methods for Ordinary Differential Systems (1991), Wiley: Wiley New York ·Zbl 0745.65049 |
[20] | Leimkuhler, B.; Patrick, G., Symplectic integration on Riemannian manifolds, J. Nonlinear Sci., 6, 367-384 (1996) ·Zbl 0862.70009 |
[21] | Leimkuhler, B. J.; Skeel, R. D., Symplectic numerical integrators in constrained Hamiltonian systems, J. Comput. Phys., 112, 117-125 (1994) ·Zbl 0817.65057 |
[22] | Lewis, H. R.; Kostelec, P. J., The use of Hamilton’s principle to derive time-advance algorithms for ordinary differential equations, Comput. Phys. Commun. (1996), to appear ·Zbl 0921.65048 |
[23] | Lewis, D.; Simo, J. C., Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlinear Sci., 4, 253-299 (1995) ·Zbl 0799.58069 |
[24] | MacKay, R., Some aspects of the dynamics of Hamiltonian systems, (Broomhead, D. S.; Iserles, A., The Dynamics of Numerics and the Numeries of Dynamics (1992), Clarendon Press: Clarendon Press Oxford), 137-193 ·Zbl 0764.58009 |
[25] | Maeda, S., Lagrangian formulation of discrete systems and concept of difference space, Math. Japon., 27, 3, 345-356 (1981) ·Zbl 0531.70020 |
[26] | Marsden, J., (Lectures on Mechanics. Lectures on Mechanics, London Mathematical Society Lecture Note Series, Vol. 174 (1992), Cambridge University Press: Cambridge University Press Cambridge, UK) ·Zbl 0744.70004 |
[27] | Marsden, J. E.; Patrick, G. W.; Shadwick, W. F., Integration Algorithms and Classical Mechanics, (Fields Institute Communications, Vol. 10 (1996), American Mathematical Society: American Mathematical Society Providence, RI) ·Zbl 0847.00055 |
[28] | Marsden, J.; Ratiu, T., Introduction to Mechanics and Symmetry (1994), Springer: Springer New York ·Zbl 0811.70002 |
[29] | Marsden, J. E.; Scheurle, J., Lagrangian reduction and the double spherical pendulum, ZAMP, 44, 1, 17-43 (1993) ·Zbl 0778.70016 |
[30] | McLachlan, R. I.; Scovel, C., A survey of open problems in symplectic integration, Fields institute Commun., 10, 151-180 (1996) ·Zbl 0871.65058 |
[31] | McLachlan, R. I.; Scovel, C., Equivariant constrained symplectic integration, J. Nonlinear Sci., 5, 233-256 (1995) ·Zbl 0836.58017 |
[32] | Meiss, J. D., Symplectic maps, variational principles, and transport, Rev. Modern Phys., 64, 3, 795-848 (1992) ·Zbl 1160.37302 |
[33] | Moser, J.; Veselov, A. P., Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys., 139, 2, 217-243 (1991) ·Zbl 0754.58017 |
[34] | Murray, R.; Li, Z.; Sastry, S., A Mathematical Introduction to Robotic Manipulation (1994), CRC Press: CRC Press Boca Raton, FL ·Zbl 0858.70001 |
[35] | Ortiz, M., A note on energy conservation and stability of nonlinear time-stepping algorithms, Computers and Structures, 24, 1, 167-168 (1986) |
[36] | Reich, S., Symplectic integration of constrained Hamiltonian systems by Runge-Kutta methods, (Technical Report 93-13 (1993), University of British Columbia) |
[37] | Reich, S., Momentum preserving symplectic integrations, Physica D, 76, 4, 375-383 (1994) ·Zbl 0818.58020 |
[38] | Reich, S., Symplectic integration of constrained Hamiltonian systems by composition methods, SIAM J. Numer. Anal., 33, 475-491 (1996) ·Zbl 0852.65060 |
[39] | Reich, S., Symplectic integrators for systems of rigid bodies, Fields Institute Commun., 10, 181-191 (1996) ·Zbl 0872.65061 |
[40] | Ryckaert, J.; Ciccotti, G.; Berendsen, H., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of \(n\)-alkanes, J. Comput. Phys., 23, 327-341 (1977) |
[41] | Sanz-Serna, J. M., Symplectic integrators for Hamiltonian problems: An overview, Acta Numerica, 1, 243-286 (1991) ·Zbl 0762.65043 |
[42] | Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamiltonian Problems (1994), Chapman and Hall: Chapman and Hall London ·Zbl 0816.65042 |
[43] | Scheck, F. A., Mechanics: From Newton’s Laws to Deterministic Chaos (1990), Springer: Springer Berlin ·Zbl 0727.70001 |
[44] | Shibberu, Y., Time-discretization of Hamiltonian systems, Compu. Math. Appl., 28, 10-12, 123-145 (1994) ·Zbl 0810.65069 |
[45] | Simo, J. C.; Gonzalez, O., Assessment of energy-momentum and symplectic schemes for stiff dynamical systems, (ASME Winter Ann. Meeting. ASME Winter Ann. Meeting, New Orleans (1993)) ·Zbl 0900.70013 |
[46] | Simo, J. C.; Tarnow, N., The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP, 43, 757-792 (1992) ·Zbl 0758.73001 |
[47] | Simo, J. C.; Wong, K. K., Int. J. Numer. Methods Eng., 33, 1321-1323 (1992) ·Zbl 0825.73960 |
[48] | Verlet, L., Computer experiments on classical fluids, Phys. Rev., 159, 98-103 (1967) |
[49] | Veselov, A. P., Integrable discrete-time systems and difference operators, Funkts. Anal. Prilozhen, 22, 2, 1-13 (1988) ·Zbl 0661.58012 |
[50] | Veselov, A. P., Integrable Lagrangian correspondences and the factorization of matrix polynomials, Funkts. Anal. Prilozhen., 25, 2, 38-49 (1991) ·Zbl 0731.58034 |
[51] | Wendlandt, J. M., Pattern evocation and energy-momentum integration of the double spherical pendulum, (M.A. Thesis (1995), Department of Mathematics, University of California at Berkeley), CPAM-656 |
[52] | Wendlandt, J. M.; Sastry, S. S., Recursive workspace control of multibody systems: A planar biped example, (IEEE Control and Decision Conf.. IEEE Control and Decision Conf., Kobe, Japan (1996)) |
[53] | Wisdom, J.; Holman, M., Symplectic maps for the \(n\) body problem, Astronom. J., 102, 4, 1528-1538 (1991) |
[54] | Wolfram, S., Mathematica: A System for Doing Mathematics by Computer (1991), Addison-Wesley: Addison-Wesley RedWood City ·Zbl 0812.68063 |
[55] | Yoshida, H., Construction of higher order symplectic integrators, Phys. Lett. A, 150, 262-268 (1990) |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.