Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the relation between Stokes multipliers and the \(T\)-\(Q\) systems of conformal field theory.(English)Zbl 0956.81077

Summary: The vacuum expectation values of the so-called Q-operators of certain integrable quantum field theories have recently been identified with spectral determinants of particular Schrödinger operators. In this paper we extend the correspondence to the \(T\)-operators, finding that their vacuum expectation values also have an interpretation as spectral determinants. As byproducts we give a simple proof of an earlier conjecture of ours, proved by another route by Suzuki, and generalise a problem in \(PT\) symmetric quantum mechanics studied by Bender and Boettcher. We also stress that the mapping between \(Q\)-operators and Schrödinger equations means that certain problems in integrable quantum field theory are related to the study of Regge poles in non-relativistic potential scattering.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

Cite

References:

[1]P. Dorey, R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz, and non-linear integral equations preprint DTP-98/81, ITFA 98-41, hep-th/9812211.; P. Dorey, R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz, and non-linear integral equations preprint DTP-98/81, ITFA 98-41, hep-th/9812211.
[2]Voros, A., Adv. Stud. Pure Math., 21, 327 (1992)
[3]Voros, A., J. Physique Lett., 43, L1 (1982)
[4]Zamolodchikov, Al. B., Phys. Lett. B, 253, 391 (1991)
[5]Pearce, P. A., J. Phys. A, 18, 3217 (1985)
[6]Suzuki, J., J. Phys. A, 32, L183 (1999) ·Zbl 1055.81567
[7]R. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 1982).; R. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 1982). ·Zbl 0538.60093
[8]Bazhanov, V. V.; Lukyanov, S. L.; Zamolodchikov, A. B., Commun. Math. Phys., 190, 247 (1997) ·Zbl 0908.35114
[9]Voros, A., J. Phys. A, 32, 1301 (1999) ·Zbl 0928.34069
[10]V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q-operators of conformal field theory, preprint RU-99-01, hep-th/9812247.; V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Spectral determinants for Schrödinger equation and Q-operators of conformal field theory, preprint RU-99-01, hep-th/9812247.
[11]Fendley, P.; Lesage, F.; Saleur, H., J. Stat. Phys., 85, 211 (1996) ·Zbl 0937.82051
[12]Hsieh, P.-F.; Sibuya, Y., J. Math. Anal. Appl., 16, 84 (1966) ·Zbl 0161.05803
[13]Y. Sibuya, Global Theory of a Second-order Linear Ordinary Differential Operator with Polynomial Coefficient (North-Holland, Amsterdam, 1975).; Y. Sibuya, Global Theory of a Second-order Linear Ordinary Differential Operator with Polynomial Coefficient (North-Holland, Amsterdam, 1975). ·Zbl 0322.34006
[14]E.J. Squires, Complex Angular Momenta and Particle Physics (Benjamin, Menlo Park, 1963).; E.J. Squires, Complex Angular Momenta and Particle Physics (Benjamin, Menlo Park, 1963).
[15]R.G. Newton, The Complex j-plane (Benjamin, Menlo Park, 1964).; R.G. Newton, The Complex j-plane (Benjamin, Menlo Park, 1964). ·Zbl 0119.44004
[16]Klümper, A.; Batchelor, M. T.; Pearce, P. A., J. Phys. A, 24, 3111 (1991)
[17]E.C. Titchmarsh, The Theory of Functions (Oxford Univ. Press, Oxford, 1932).; E.C. Titchmarsh, The Theory of Functions (Oxford Univ. Press, Oxford, 1932). ·Zbl 0005.21004
[18]Destri, C.; de Vega, H. J., Phys. Rev. Lett., 69, 2313 (1992) ·Zbl 0968.82511
[19]Destri, C.; de Vega, H. J., Nucl. Phys. B, 438, 413 (1995) ·Zbl 1052.82529
[20]Fioravanti, D.; Mariottini, A.; Quattrini, E.; Ravanini, F., Phys. Lett. B, 390, 243 (1997)
[21]Dorey, P.; Tateo, R., Nucl. Phys. B, 482, 639 (1996) ·Zbl 0925.82044
[22]A. Galindo, P. Pascual, Quantum Mechanics I (Springer, Berlin, 1990).; A. Galindo, P. Pascual, Quantum Mechanics I (Springer, Berlin, 1990). ·Zbl 0824.00008
[23]M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Functions (National Bureau of Standards, 1964).; M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Functions (National Bureau of Standards, 1964). ·Zbl 0171.38503
[24]Bender, C. M.; Boettcher, S., Phys. Rev. Lett., 80, 4243 (1998)
[25]Voros, A., Nucl. Phys. B, 165, 209 (1980)
[26]Voros, A., Ann. Inst. Henri Poincaré, XXXIX, 211 (1983)
[27]Klümper, A.; Pearce, P. A., Physica A, 183, 304 (1992) ·Zbl 1201.82009
[28]Kuniba, A.; Nakanishi, T.; Suzuki, J., Int. J. Mod. Phys. A, 9, 5215 (1994)
[29]Bazhanov, V. V.; Lukyanov, S. L.; Zamolodchikov, A. B., Commun. Math. Phys., 177, 381 (1996) ·Zbl 0851.35113
[30]V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Integrable structure of conformal field theory III. The Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297, hep-th/9805008.; V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Integrable structure of conformal field theory III. The Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297, hep-th/9805008. ·Zbl 1057.81531
[31]Zamolodchikov, Al. B., Nucl. Phys. B, 342, 695 (1990)
[32]Cheng, H., Phys. Rev., 127, 647 (1962) ·Zbl 0108.41806
[33]R. Caracciolo, F. Gliozzi, R. Tateo, A topological invariant of RG flows in 2D integrable quantum field theories, preprint DFTT-5/99, ITFA 99-3, hep-th/9902094.; R. Caracciolo, F. Gliozzi, R. Tateo, A topological invariant of RG flows in 2D integrable quantum field theories, preprint DFTT-5/99, ITFA 99-3, hep-th/9902094.
[34]Kirillov, A. N., Prog. Theor. Phys. Suppl., 118, 61 (1995)
[35]Gliozzi, F.; Tateo, R., Phys. Lett. B, 348, 84 (1995)
[36]D. Zagier, Arithmetic Algebraic Geometry (Birkhäuser, Basel, 1991) p. 391.; D. Zagier, Arithmetic Algebraic Geometry (Birkhäuser, Basel, 1991) p. 391. ·Zbl 0728.11062
[37]Gliozzi, F.; Tateo, R., Int. J. Mod. Phys. A, 11, 4051 (1996) ·Zbl 1044.82537
[38]Bender, C. M.; Boettcher, S.; Meisinger, P. N., J. Math. Phys., 40, 2201 (1999) ·Zbl 1057.81512
[39]Berry, M. V., Proc. R. Soc. Lond. A, 422, 7 (1989)
[40]C.M. Bender, S. Boettcher, H.F. Jones, V.M. Savage, Complex square well – a new exactly solvable quantum mechanical model, quant-ph/9906057.; C.M. Bender, S. Boettcher, H.F. Jones, V.M. Savage, Complex square well – a new exactly solvable quantum mechanical model, quant-ph/9906057. ·Zbl 0946.81076
[41]Langer, R. E., Phys. Rev., 51, 669 (1937) ·Zbl 0017.01705
[42]Regge, T., Nuovo Cimento, 14, 951 (1959) ·Zbl 0087.42903
[43]Regge, T., Nuovo Cimento, 16, 947 (1960)
[44]P. Fendley, Airy functions in the thermodynamic Bethe ansatz hep-th/9906114.; P. Fendley, Airy functions in the thermodynamic Bethe ansatz hep-th/9906114. ·Zbl 0951.34070
[45]A. Voros, Exact resolution method for general 1D polynomial Schrödinger equation, math-ph/9903045, J. Phys. A 32 (1999) 5993.; A. Voros, Exact resolution method for general 1D polynomial Schrödinger equation, math-ph/9903045, J. Phys. A 32 (1999) 5993. ·Zbl 0967.81013
[46]P. Fendley, H. Saleur, Differential equations and duality in massless integrable field theories at zero temperature, solv-int/9904012.; P. Fendley, H. Saleur, Differential equations and duality in massless integrable field theories at zero temperature, solv-int/9904012. ·Zbl 1056.81524
[47]Dorey, P.; Tateo, R., Nucl. Phys. B, 515, 575 (1998) ·Zbl 0945.81055
[48]F.W.J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974).; F.W.J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974). ·Zbl 0303.41035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp