Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Embedding AdS black holes in ten and eleven dimensions.(English)Zbl 0951.83033

Summary: We construct the nonlinear Kaluza-Klein ansätze describing the embeddings of the \(U(1)^3\), \(U(1)^4\) and \(U(1)^2\) truncations of \(D=5\), \(D=4\) and \(D=7\) gauged supergravities into the type IIB string and M-theory. These enables one to oxidise any associated lower-dimensional solutions to \(D=10\) or \(D=11\). In particular, we use these general ansätze to embed the charged \(\text{AdS}_5\), \(\text{AdS}_4\) and \(\text{AdS}_7\) black hole solutions in ten and eleven dimensions. The charges for the black holes with toroidal horizons may be interpreted as the angular momenta of D3-branes, M2-branes and M5-branes spinning in the transverse dimensions, in their near-horizon decoupling limits. The horizons of the black holes coincide with the world-volumes of the branes. The Kaluza-Klein ansätze also allow the black holes with spherical or hyperbolic horizons to be reinterpreted in \(D=10\) or \(D=11\).

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C57 Black holes
83E30 String and superstring theories in gravitational theory

Cite

References:

[1]Black holes in cosmological Einstein-Maxwell theory,in; Black holes in cosmological Einstein-Maxwell theory,in
[2]Behrndt, K.; Chamseddine, A. H.; Sabra, W. A., BPS black holes in \(N = 2\) five-dimensional AdS supergravity, Phys. Lett. B, 442, 97 (1998), hep-th/9807187 ·Zbl 1002.83517
[3]D. Birmingham, Topological black holes in anti-de Sitter space, hep-th/9808032.; D. Birmingham, Topological black holes in anti-de Sitter space, hep-th/9808032. ·Zbl 0933.83025
[4]M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes, hep-th/9808097.; M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes, hep-th/9808097. ·Zbl 0953.83020
[5]D. Klemm, BPS black holes in gauged \(ND\); D. Klemm, BPS black holes in gauged \(ND\)
[6]K. Behrndt, M. Cveticˇand W.A. Sabra, Non-extreme black holes five-dimensional \(N\); K. Behrndt, M. Cveticˇand W.A. Sabra, Non-extreme black holes five-dimensional \(N\) ·Zbl 0949.83072
[7]M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged \(N\); M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged \(N\) ·Zbl 0951.83060
[8]A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, hep-th/9902170.; A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, hep-th/9902170.
[9]M. Cveticˇand S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, hep-th/9902195.; M. Cveticˇand S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, hep-th/9902195. ·Zbl 0956.83030
[10]M. Cveticˇand S.S. Gubser, Thermodynamic stability and phases of general spinning branes, hep-th/9903132.; M. Cveticˇand S.S. Gubser, Thermodynamic stability and phases of general spinning branes, hep-th/9903132. ·Zbl 1055.81599
[11]W. Sabra, Anti-de Sitter black holes in \(N\); W. Sabra, Anti-de Sitter black holes in \(N\) ·Zbl 0992.83040
[12]M.M. Caldarelli and D. Klemm, M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories, hep-th/9903078.; M.M. Caldarelli and D. Klemm, M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories, hep-th/9903078. ·Zbl 0951.83051
[13]Maldacena, J., The large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998), hep-th/9711200 ·Zbl 0914.53047
[14]Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428, 105 (1998), hep-th/9802109 ·Zbl 1355.81126
[15]Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998), hep-th/9802150 ·Zbl 0914.53048
[16]Witten, E., Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys., 2, 505 (1998), hep-th/9803131 ·Zbl 1057.81550
[17]de Wit, B.; Nicolai, H., \(N = 8\) supergravity with localSO(8) ×SU(8) invariance, Phys. Lett. B, 108, 285 (1982)
[18]de Wit, B.; Nicolai, H., \(N = 8\) supergravity, Nucl. Phys. B, 208, 323 (1982)
[19]Duff, M. J.; Pope, C. N., Kaluza-Klein supergravity and the seven sphere, (Ferrara, S.; Taylor, J. G.; van Nieuwenhuizen, P., Supersymmetry and supergravity, 82 (1983), World Scientific: World Scientific Singapore) ·Zbl 0967.83521
[20]Duff, M. J.; Nilsson, B. E.W.; Pope, C. N., Kaluza-Klein supergravity, Phys. Rep., 130, 1 (1986) ·Zbl 0588.53073
[21]Pernici, M.; Pilch, K.; van Nieuwenhuizen, P., Gauged maximally extended supergravity in seven dimensions, Phys. Lett. B, 143, 103 (1984)
[22]Gunaydin, M.; Romans, L. J.; Warner, N. P., Gauged \(N = 8\) supergravity in five dimensions, Phys. Lett. B, 154, 268 (1985)
[23]Schwarz, J. H., Covariant field equations of chiral \(N = 2 D = 10\) supergravity, Nucl. Phys. B, 226, 269 (1983)
[24]Gunaydin, M.; Marcus, N., The spectrum of the \(S^5\) compactification of the \(N = 2, D = 10\) supergravity and the unitary supermultiplet, Class. Quant. Grav., 2, L11 (1985) ·Zbl 0575.53060
[25]Kim, H. J.; Romans, L. J.; van Nieuwenhuizen, P., Mass spectrum of chiral ten-dimensional \(N = 2\) supergravity on \(S^5\), Phys. Rev. D, 32, 389 (1985)
[26]Townsend, P. K.; van Nieuwenhuizen, P., Gauged seven-dimensional supergravity, Phys. Lett. B, 125, 41 (1983)
[27]Pilch, K.; Townsend, P. K.; van Nieuwenhuizen, P., Compactification of \(d = 11\) supergravity on \(S^4\) (or 11 = 7 + 4, too), Nucl. Phys. B, 242, 377 (1984)
[28]J.T. Liu and R. Minasian, Black holes and membranes in \(AdS_7\); J.T. Liu and R. Minasian, Black holes and membranes in \(AdS_7\) ·Zbl 0992.83075
[29]Gibbons, G. W.; Townsend, P. K., Vacuum interpolation in supergravity via super \(p\)-branes, Phys. Rev. Lett., 71, 3754 (1993) ·Zbl 0972.83598
[30]Duff, M. J.; Gibbons, G. W.; Townsend, P. K., Macroscopic superstrings as interpolating solitons, Phys. Lett. B, 332, 321 (1994)
[31]Gibbons, G. W.; Horowitz, G. T.; Townsend, P. K., Higher-dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav., 12, 297 (1995) ·Zbl 0817.53054
[32]M.J. Duff, Anti-de Sitter space, branes, singletons, superconformal field theories and all that, hep-th/9808100.; M.J. Duff, Anti-de Sitter space, branes, singletons, superconformal field theories and all that, hep-th/9808100. ·Zbl 1013.81048
[33]Duff, M. J.; Pope, C. N., Consistent truncations in Kaluza-Klein theories, Nucl. Phys. B, 255, 355 (1985) ·Zbl 0967.83521
[34]C.N. Pope, Consistency of truncations in Kaluza-Klein, published in the Proceedings of the 1984 Santa Fe meeting.; C.N. Pope, Consistency of truncations in Kaluza-Klein, published in the Proceedings of the 1984 Santa Fe meeting.
[35]de Wit, B.; Nicolai, H.; Warner, N. P., The embedding of gauged \(N = 8\) supergravity into \(D = 11\) supergravity, Nucl. Phys. B, 255, 29 (1985)
[36]de Wit, B.; Nicolai, H., The consistency of the \(S^7\) truncation in \(D = 11\) supergravity, Nucl. Phys. B, 281, 211 (1987)
[37]Duff, M. J.; Liu, J. T.; Rahmfeld, J., Four-dimensional string-string-string triality, Nucl. Phys. B, 459, 125 (1996), hep-th/9508094 ·Zbl 0925.81167
[38]Cveticˇ, M.; Youm, D., Dyonic BPS saturated black holes of heterotic string on a six torus, Phys. Rev. D, 53, 584 (1996), hep-th/9507090
[39]Lü, H.; Pope, C. N., \(p\)-brane solitons in maximal supergravities, Nucl. Phys. B, 465, 127 (1996), hep-th/9512012 ·Zbl 1002.83520
[40]Khuri, R. R.; Ortin, T., Supersymmetric black holes in \(N = 8\) supergravity, Nucl. Phys. B, 467, 355 (1996) ·Zbl 1003.83519
[41]Cveticˇ, M.; Tseytlin, A. A., General class of BPS saturated dyonic black holes as exact superstring solutions, Phys. Lett. B, 366, 95 (1996), hep-th/9510097
[42]Tseytlin, A. A., Harmonic superpositions of M-branes, Nucl. Phys. B, 475, 149 (1996), hep-th/9604035 ·Zbl 0925.81175
[43]Bergshoeff, E.; Duff, M. J.; Pope, C. N.; Sezgin, E., Compactifications of the eleven-dimensional supermembrane, Phys. Lett. B, 224, 71 (1989)
[44]Bergshoeff, E.; Sezgin, E.; Townsend, P., Supermembranes and eleven-dimensional supergravity, Phys. Lett. B, 189, 75 (1987) ·Zbl 1156.81434
[45]Duff, M. J.; Stelle, K. S., Multi-membrane solutions of \(D = 11\) supergravity, Phys. Lett. B, 253, 113 (1991)
[46]Cveticˇ, M.; Youm, D., Near BPS saturated rotating electrically charged black holes as string states, Nucl. Phys. B, 477, 449 (1996), hep-th/9605051 ·Zbl 0925.81191
[47]Cveticˇ, M.; Youm, D., Rotating intersecting M-branes, Nucl. Phys. B, 499, 253 (1997), hep-th/9612229 ·Zbl 0935.83034
[48]S. Gubser, Thermodynamics of spinning D3-branes, hep-th/9810225.; S. Gubser, Thermodynamics of spinning D3-branes, hep-th/9810225.
[49]C. Csaki and Y. Oz, J. Russo and J. Terning, Large \(N\); C. Csaki and Y. Oz, J. Russo and J. Terning, Large \(N\)
[50]P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, hep-th/9901056.; P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, hep-th/9901056. ·Zbl 0965.81095
[51]R. Cai and K. Soh, Critical behavior in the rotating D-branes, hep-th/9812121.; R. Cai and K. Soh, Critical behavior in the rotating D-branes, hep-th/9812121.
[52]P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, hep-th/9811120.; P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, hep-th/9811120.
[53]J.G. Russo and K. Sfetsos, Rotating D3-branes and QCD in three dimensions, hep-th/9901056.; J.G. Russo and K. Sfetsos, Rotating D3-branes and QCD in three dimensions, hep-th/9901056. ·Zbl 0938.81037
[54]C. Csaki, J. Russo and K. Sfetsos and J. Terning, Supergravity Models for 3 + 1 Dimensional QCD, hep-th/9902067.; C. Csaki, J. Russo and K. Sfetsos and J. Terning, Supergravity Models for 3 + 1 Dimensional QCD, hep-th/9902067. ·Zbl 1058.83539
[55]K. Sfetsos, Rotating NS5-brane solution and its exact string theoretical description, hep-th/9903201.; K. Sfetsos, Rotating NS5-brane solution and its exact string theoretical description, hep-th/9903201. ·Zbl 0958.81060
[56]Thorne, K. S., Black holes: the membrane paradigm (1986), Yale Univ. Press: Yale Univ. Press New Haven ·Zbl 1374.83002
[57]Myers, R. C.; Perry, M. J., Black holes in higher dimensional space-times, Ann. Phys., 172, 304 (1986) ·Zbl 0601.53081
[58]M. Cveticˇ, H. Lüand C.N. Pope, Space-times of boosted \(p\); M. Cveticˇ, H. Lüand C.N. Pope, Space-times of boosted \(p\)
[59]Nilsson, B. E.W., On the embedding of \(d = 4, N = 8\) gauged supergravity in \(d = 11, N = 1\) supergravity, Phys. Lett. B, 155, 54 (1985)
[60]Pope, C. N., The embedding of the Einstein-Yang-Mills equations in \(D = 11\) supergravity, Class. Quant. Grav., 2, L77 (1985) ·Zbl 0575.53062
[61]Pernici, M.; Pilch, K.; van Nieuwenhuizen, P., Non-compact gaugings and critical points of maximal supergravity in seven dimensions, Nucl. Phys. B, 249, 381 (1985)
[62]Lü, H.; Pope, C. N.; Sezgin, E.; Stelle, K. S., Dilatonic \(p\)-brane solitons, Phys. Lett. B, 371, 46 (1996), hep-th/9511203
[63]Duff, M. J.; Lu, J. X., Black and super \(p\)-branes in diverse dimensions, Nucl. Phys. B, 416, 301 (1994), hep-th/9306052 ·Zbl 1007.81530
[64]Cremmer, E.; Julia, B., The \(N = 8\) supergravity theory. 1. The Lagrangian, Phys. Lett. B, 80, 48 (1978)
[65]Cremmer, E.; Julia, B., TheSO(8) supergravity, Nucl. Phys. B, 159, 141 (1979)
[66]Cremmer, E.; Julia, B.; Lü, H.; Pope, C. N., Dualisation of dualities, Nucl. Phys. B, 523, 73 (1998), hep-th/9710119 ·Zbl 1031.81599
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp