Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A matrix model for heterotic \(\text{Spin}(32)/Z_2\) and type I string theory.(English)Zbl 0947.81067

Summary: We consider heterotic string theories in the DLCQ. We derive that the matrix model of the Spin(32)/\(\mathbb{Z}_2\) heterotic theory is the theory living on \(N\) D-strings in type I wound on a circle with no Spin(32)/\(\mathbb{Z}_2\) Wilson line on the circle. This is an O\((N)\) gauge theory. We rederive the matrix model for the \(E_8\times E_8\) heterotic string theory, explicitly taking care of the Wilson line around the lightlike circle. The result is the same theory as for Spin(32)/\(\mathbb{Z}_2\) except that now there is a Wilson line on the circle. We also see that the integer \(N\) labeling the sector of the O\((N)\) matrix model is not just the momentum around the lightlike circle, but a shifted momentum depending on the Wilson line. We discuss the aspect of level matching, GSO projections and why, from the point of view of matrix theory the \(E_8\times E_8\) theory, and not the Spin(32)/\(\mathbb{Z}_2\), develops an 11th dimension for strong coupling. Furthermore a matrix theory for type I is derived. This is again the O\((N)\) theory living on the D-strings of type I. For small type I coupling the system is \(0+1\)-dimensional quantum mechanics.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics

Cite

References:

[1]Kachru, Shamit; Silverstein, Eva, On gauge bosons in the matrix model approach to M-theory, Phys. Lett. B, 396, 70 (1997), hep-th/9612162 ·Zbl 0979.81576
[2]Lubos Motl, Quaternions and M(atrix) theory in spaces with boundaries, hep-th/9612198.; Lubos Motl, Quaternions and M(atrix) theory in spaces with boundaries, hep-th/9612198.
[3]Lubos Motl, Proposals on non-perturbative superstring interactions, hep-th/9701025.; Lubos Motl, Proposals on non-perturbative superstring interactions, hep-th/9701025.
[4]Kim, Nakwoo; Rey, Soo-Jong, M(atrix) Theory on an orbifold and twisted membrane, Nucl. Phys. B, 504, 189 (1997), hep-th/9701139 ·Zbl 0934.81051
[5]Banks, Tom; Seiberg, Nathan, Strings from matrices, Nucl. Phys. B, 497, 41 (1997), hep-th/9702187 ·Zbl 0934.81035
[6]Banks, Tom; Motl, Lubos, Heterotic strings from matrices, J. High Energy Phys., 12, 004 (1997), hep-th/9703218 ·Zbl 0949.81513
[7]Lowe, David A., Heterotic matrix string theory, Phys. Lett. B, 403, 189 (1997), hep-th/9704041
[8]Rey, Soo-Jong, Heterotic M(atrix) strings and their interactions, Nucl. Phys. B, 502, 170 (1997), hep-th/9704158 ·Zbl 0939.81034
[9]Horava, Petr, Matrix theory and heterotic strings on tori, Nucl. Phys. B, 505, 84 (1997), hep-th/9705055 ·Zbl 0925.81260
[10]Govindarajan, Suresh, Heterotic M(atrix) theory at generic points in Narain moduli space, Nucl. Phys. B, 507, 589 (1997), hep-th/9707164 ·Zbl 0925.32014
[11]Lubos Motl and Leonard Susskind, Finite \(N\); Lubos Motl and Leonard Susskind, Finite \(N\)
[12]Sen, Ashoke, D0-branes on \(T^n\) and matrix theory, Adv. Theor. Math. Phys., 2, 51 (1998), hep-th/9709220 ·Zbl 0907.58087
[13]Seiberg, N., Why is the matrix model correct?, Phys. Rev. Lett., 79, 3577 (1997), hep-th/9710009 ·Zbl 0946.81062
[14]Soo-Jong Rey and Savdeep Sethi, to appear.; Soo-Jong Rey and Savdeep Sethi, to appear.
[15]Narain, K.; Sarmadi, M.; Witten, E., Nucl. Phys. B, 279, 369 (1987)
[16]Ginsparg, P., Phys. Rev. D, 35, 648 (1987)
[17]Obers, N. A.; Pioline, B.; Rabinovici, E., M-theory and \(U\)-duality on \(T^d\) with gauge backgrounds, Nucl. Phys. B, 525, 163 (1998), hep-th/9712084 ·Zbl 0962.81041
[18]Dijkgraaf, R.; Verlinde, E.; Verlinde, H., Matrix string theory, Nucl. Phys. B, 500, 43 (1997), hep-th/9703030 ·Zbl 0934.81044
[19]Banks, Tom, Matrix theory, (Nucl. Phys. B (Proc. Suppl.), 67 (1998)), 180, hep-th/9710231 ·Zbl 0985.81664
[20]Danielsson, Ulf; Ferretti, Gabriele; Klebanov, Igor R., Creation of fundamental strings by crossing D-branes, Phys. Rev. Lett., 79, 1984 (1997), hep-th/9805084 ·Zbl 0947.81551
[21]Danielsson, Ulf; Ferretti, Gabriele, Creation of strings in D-particle quantum mechanics, (Nucl. Phys. B (Proc. Suppl.), 68 (1998)), 78, hep-th/9709171 ·Zbl 0999.81510
[22]Clifford V. Johnson, Superstrings from supergravity, hep-th/9804200.; Clifford V. Johnson, Superstrings from supergravity, hep-th/9804200.
[23]Connes, Alain; Douglas, Michael R.; Schwarz, Albert, Non-commutative geometry and Matrix theory: Compactification on tori, J. High Energy Phys., 02, 003 (1998), hep-th/9711162 ·Zbl 1018.81052
[24]Douglas, Michael R.; Hull, Chris, D-branes and the non-commutative torus, J. High Energy Phys., 02, 008 (1998), hep-th/9711165 ·Zbl 0957.81017
[25]Banks, T.; Fischler, W.; Shenker, S. H.; Susskind, L., M-theory as a Matrix model: A conjecture, Phys. Rev. D, 55, 5112 (1997), hep-th/9610043
[26]Polchinski, Joseph; Witten, Edward, Evidence for heterotic-type I string duality, Nucl. Phys. B, 460, 525 (1996), hep-th/9510169 ·Zbl 1004.81526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp