Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

New \(N=2\) superconformal field theories from M/F-theory orbifolds.(English)Zbl 0944.81032

Summary: We consider M-theory on \((T^2\times \mathbb{R}^2)/\mathbb{Z}_n\) with M5-branes wrapped on \(\mathbb{R}^2\). One can probe this background with M5-branes wrapped on \(T^2\). The theories on the probes provide many new examples of \(N=2\) field theories without Lagrangian description. All these theories have Coulomb branches, and we find the corresponding Seiberg-Witten curves. The exact solution is encoded in a Hitchin system on an orbifolded torus with punctures. The theories we consider also arise from D3 probes in F-theory on \(K3\times K3\) orbifolds. Interestingly, the relevant F-theory background has frozen \(\mathbb{Z}_n\) singularities which are analogous to frozen \(\mathbb{Z}_2\) singularities in type I string theory. We use the F-theory description to find supergravity duals of the probe SCFT’s in the large-\(N\) limit and compute the spectrum of relevant and marginal operators. We also explain how the decoupling of U(1) factors is manifested in the supergravity description.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14H81 Relationships between algebraic curves and physics
81T60 Supersymmetric field theories in quantum mechanics
83E30 String and superstring theories in gravitational theory

Cite

References:

[1]Argyres, P. C.; Plesser, M. R.; Seiberg, N.; Witten, E., New \(N = 2\) superconformal field theories in four dimensions, Nucl. Phys. B, 461, 71 (1996) ·Zbl 1004.81557
[2]J. Maldacena, The large-\(N\); J. Maldacena, The large-\(N\)
[3]S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109; S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109
[4]E. Witten, Anti-de Sitter space and holography, hep-th/9802150.; E. Witten, Anti-de Sitter space and holography, hep-th/9802150.
[5]Uranga, A. M., Towards mass deformed \(N = 4 SO (n)\) and \(Sp (k)\) theories from brane configurations, Nucl. Phys. B, 526, 241 (1998), hep-th/9803054 ·Zbl 1031.81655
[6]Witten, E., Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B, 500, 3 (1997) ·Zbl 0934.81066
[7]M. Douglas and G. Moore, D-branes, quivers, and ALE instantons, hep-th/9603167.; M. Douglas and G. Moore, D-branes, quivers, and ALE instantons, hep-th/9603167.
[8]Dasgupta, K.; Mukhi, S., F-theory at constant coupling, Phys. Lett. B, 385, 125 (1996), hep-th/9606044
[9]J. Polchinski, Tensors from K3 orientifolds, hep-th/9606165.; J. Polchinski, Tensors from K3 orientifolds, hep-th/9606165.
[10]A. Kapustin, Solution of \(N\); A. Kapustin, Solution of \(N\) ·Zbl 1079.81571
[11]N. Seiberg and E. Witten, Gauge dynamics and compactification to three dimensions, hep-th/9607163.; N. Seiberg and E. Witten, Gauge dynamics and compactification to three dimensions, hep-th/9607163. ·Zbl 1058.81717
[12]Blum, J. D.; Intriligator, K., Consistency conditions for branes at orbifold singularities, Nucl. Phys. B, 506, 223 (1997), hep-th/9705030 ·Zbl 0925.81263
[13]Vafa, C.; Witten, E., On orbifolds with discrete torsion, J. Geom. Phys., 15, 189 (1995), hep-th/9409188 ·Zbl 0816.53053
[14]A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, hep-th/9712145.; A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, hep-th/9712145. ·Zbl 0961.81077
[15]A. Kapustin and S. Sethi, The Higgs branch of impurity theories, hep-th/9804027.; A. Kapustin and S. Sethi, The Higgs branch of impurity theories, hep-th/9804027. ·Zbl 0967.81050
[16]B.R. Greene, C.I. Lazaroiu and P. Yi, D-particles on \(T^4Z_N\); B.R. Greene, C.I. Lazaroiu and P. Yi, D-particles on \(T^4Z_N\)
[17]Donagi, R.; Witten, E., Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B, 460, 299 (1996) ·Zbl 0996.37507
[18]Sen, A., F-theory and orientifolds, Nucl. Phys. B, 475, 562 (1996) ·Zbl 0925.81181
[19]Douglas, M. R.; Lowe, D. A.; Schwarz, J. H., Probing F-theory with multiple branes, Phys. Lett. B, 394, 297 (1997), hep-th/9612062
[20]Berkooz, M., Anomalies, dualities, and topology of \(D = 6 N = 1\) superstring vacua, Nucl. Phys. B, 475, 115 (1996) ·Zbl 0925.81335
[21]Sen, A.; Sethi, S., The mirror transform of Type I vacua in six dimensions, Nucl. Phys. B, 499, 45 (1997), hep-th/9703157 ·Zbl 0934.81041
[22]Gimon, E. G.; Polchinski, J., Consistency conditions for orientifolds and D-manifolds, Phys. Rev. D, 54, 1667 (1996), hep-th/9601038
[23]Gaberdiel, M. R.; Zwiebach, B., Exceptional groups from open strings, Nucl. Phys. B, 518, 151 (1998), hep-th/9709013 ·Zbl 0925.53048
[24]Y. Oz and J. Teming, Orbifolds of \(AdS_5S^5\); Y. Oz and J. Teming, Orbifolds of \(AdS_5S^5\)
[25]A. Fayyazuddin and M. Spalinski, Large-\(N\); A. Fayyazuddin and M. Spalinski, Large-\(N\) ·Zbl 1080.81571
[26]O. Aharony, A. Fayyazuddin and J. Maldacena, The Large-\(NN\); O. Aharony, A. Fayyazuddin and J. Maldacena, The Large-\(NN\) ·Zbl 0958.81084
[27]Kim, H. J.; Romans, L. J.; van Nieuwenhuizen, P., Mass spectrum of chiral ten-dimensional \(N = 2\) supergravity on \(S^5\), Phys. Rev. D, 32, 389 (1985)
[28]Gunaydin, M.; Romans, L. J.; Warner, N. P., Compact and non-compact gauged supergravity theories in five dimensions, Nucl. Phys. B, 272, 598 (1986)
[29]S. Gukov, Comments on \(N\); S. Gukov, Comments on \(N\)
[30]Bershadsky, M.; Intriligator, K.; Kachru, S.; Morrison, D. R.; Sadov, V.; Vafa, C., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B, 481, 215 (1996) ·Zbl 1049.81581
[31]A. Kapustin, \(D_n\); A. Kapustin, \(D_n\)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp