[1] | Douglas N. Arnold, Richard S. Falk, and R. Winther, Preconditioning in \?(\?\?\?) and applications, Math. Comp. 66 (1997), no. 219, 957 – 984. ·Zbl 0870.65112 |
[2] | D. BALDOMIR, Differential forms and electromagnetism in 3-dimensional Euclidean space \(\mathbb{R}^3\)., IEE Proc. A, 133 (1986), pp. 139-143. CMP 18:17 |
[3] | A. BOSSAVIT, A rationale for edge elements in 3D field computations, IEEE Trans. Mag., 24 (1988), pp. 1325-1346. |
[4] | height 2pt depth -1.6pt width 23pt, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A, 135 (1988), pp. 1325-1346. |
[5] | height 2pt depth -1.6pt width 23pt, A new viewpoint on mixed elements, Meccanica, 27 (1992), pp. 1325-1346. |
[6] | height 2pt depth -1.6pt width 23pt, Électromagnétisme, en vue de la modélisation, Springer-Verlag, Paris, 1993. CMP 98:11 |
[7] | height 2pt depth -1.6pt width 23pt, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements, no. 2 in Academic Press Electromagnetism Series, Academic Press, San Diego, 1998. CMP 98:06 |
[8] | Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. ·Zbl 0804.65101 |
[9] | Franco Brezzi, Jim Douglas Jr., Ricardo Durán, and Michel Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), no. 2, 237 – 250. ·Zbl 0631.65107 ·doi:10.1007/BF01396752 |
[10] | Franco Brezzi, Jim Douglas Jr., Michel Fortin, and L. Donatella Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 581 – 604 (English, with French summary). ·Zbl 0689.65065 |
[11] | Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. ·Zbl 0788.73002 |
[12] | Z. CAI, R. PARASHKEVOV, T. RUSSEL, AND X. YE, Domain decomposition for a mixed finite element method in three dimensions, in Proc. 9th Internat. Conf. Domain Decomposition Methods, Bergen, Norway, 1996 (to appear). ·Zbl 1057.65095 |
[13] | Henri Cartan, Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, Paris, 1967 (French). ·Zbl 0184.12701 |
[14] | Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. ·Zbl 0383.65058 |
[15] | G. DESCHAMPS, Electromagnetics and differential forms, Proc IEEE, 69 (1981), pp. 1325-1346. |
[16] | Jim Douglas Jr. and Jean E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39 – 52. ·Zbl 0624.65109 |
[17] | R. E. Ewing and J. Wang, Analysis of the Schwarz algorithm for mixed finite elements methods, RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 6, 739 – 756 (English, with English and French summaries). ·Zbl 0765.65104 |
[18] | V. Girault, Curl-conforming finite element methods for Navier-Stokes equations with nonstandard boundary conditions in \?³, The Navier-Stokes equations (Oberwolfach, 1988) Lecture Notes in Math., vol. 1431, Springer, Berlin, 1990, pp. 201 – 218. ·doi:10.1007/BFb0086071 |
[19] | Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. ·Zbl 0585.65077 |
[20] | R. HIPTMAIR, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal. 36 (1999), 204-225. CMP 99:04 |
[21] | R. HIPTMAIR AND R. HOPPE, Multilevel preconditioning for mixed problems in three dimensions, Tech. Rep. 359, Mathematisches Institut, Universität Augsburg, 1996. to appear in Numer. Math. |
[22] | R. HIPTMAIR AND A. TOSELLI, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions., in Parallel Solution of PDEs, IMA Volumes in Mathematics and its Applications, Springer, Berlin, 1998. to appear. ·Zbl 0961.65109 |
[23] | R. HOPPE AND B. WOHLMUTH, A comparison of a posteriori error estimators for mixed finite elements, Tech. Rep. 350, Math.-Nat. Fakultät, Universität Augsburg, 1996. to appear in Math. Comp. ·Zbl 0929.65094 |
[24] | E. F. Kaasschieter and A. J. M. Huijben, Mixed-hybrid finite elements and streamline computation for the potential flow problem, Numer. Methods Partial Differential Equations 8 (1992), no. 3, 221 – 266. ·Zbl 0767.76029 ·doi:10.1002/num.1690080302 |
[25] | K. MAHADEVAN AND R. MITTA, Use of Whitney’s edge and face elements for efficient finite element time domain solution of Maxwell’s equations, J. Electromagn. Waves Appl., 8 (1994), pp. 1325-1346. |
[26] | J.-C. Nédélec, Mixed finite elements in \?³, Numer. Math. 35 (1980), no. 3, 315 – 341. ·Zbl 0419.65069 ·doi:10.1007/BF01396415 |
[27] | J.-C. Nédélec, A new family of mixed finite elements in \?³, Numer. Math. 50 (1986), no. 1, 57 – 81. ·Zbl 0625.65107 ·doi:10.1007/BF01389668 |
[28] | P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292 – 315. Lecture Notes in Math., Vol. 606. |
[29] | Panayot S. Vassilevski and Jun Ping Wang, Multilevel iterative methods for mixed finite element discretizations of elliptic problems, Numer. Math. 63 (1992), no. 4, 503 – 520. ·Zbl 0797.65086 ·doi:10.1007/BF01385872 |
[30] | A. WALSLEBEN, Whitney Elemente zur Diskretisierung der Maxwell-Gleichungen, Master’s thesis, Institut für Mathematik I, Freie Universität Berlin, 1996. |
[31] | H. WHITNEY, Geometric Integration Theory, Princeton Univ. Press, Princeton, 1957. ·Zbl 0083.28204 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.