Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Small instantons in string theory.(English)Zbl 0935.81052

Summary: A long-standing puzzle about the heterotic string has been what happens when an instanton shrinks to zero size. It is argued here that the answer at the quantum level is that an extra \(SU(2)\) gauge symmetry appears that is supported in the core of the instanton. Thus in particular the quantum heterotic string has vacua with higher rank than is possible in conformal field theory. When k instantons collapse at the same point, the enhanced gauge symmetry is \(Sp(k)\). These results, which can be tested by comparison to Dirichlet five-branes of Type I superstrings and to the ADHM construction of instantons, give the first example for the heterotic string of a non-perturbative phenomenon that cannot be turned off by making the coupling smaller. They have applications to several interesting puzzles about string duality.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
58Z05 Applications of global analysis to the sciences

Cite

References:

[1]Witten, E., String theory dynamics in various dimensions, Nucl. Phys. B, 443, 85 (1995) ·Zbl 0990.81663
[2]Strominger, A., Massless black holes and conifolds in string theory, Nucl. Phys. B, 451, 96 (1995) ·Zbl 0925.83071
[3]de Wit, B.; Lauwers, P.; Van Proeyen, A., Lagrangians of \(N = 2\) supergravity-matter systems, Nucl. Phys. B, 255, 269 (1985)
[4]E. Witten, Some comments on string dynamics, hep-th/9507121.; E. Witten, Some comments on string dynamics, hep-th/9507121. ·Zbl 1003.81535
[5]Callan, C. G.; Harvey, J. A.; Strominger, A., Supersymmetric string solitons, (Proc. String Theory And Quantum Gravity ’91. Proc. String Theory And Quantum Gravity ’91, Trieste (1991))
[6]J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, hep-th/9510017.; J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, hep-th/9510017. ·Zbl 1020.81797
[7]Atiyah, M. F.; Drinfeld, V. G.; Hitchin, N. J.; Manin, Y. I., Construction of instantons, Phys. Lett. A, 65, 185 (1978) ·Zbl 0424.14004
[8]J. Gauntlett and J.A. Harvey, \(S\); J. Gauntlett and J.A. Harvey, \(S\)
[9]Harvey, J. A.; Strominger, A., The heterotic string is a soliton, Nucl. Phys. B, 458, 456 (1996) ·Zbl 1003.81517
[10](Salam, A.; Sezgin, E., Supergravity in diverse dimensions (1989), North-Holland: North-Holland Amsterdam)
[11]Banks, T.; Seiberg, N., Non-perturbative infinities, Nucl. Phys. B, 273, 157 (1986)
[12]Hitchin, N. J.; Karlhede, A.; Lindstrom, U.; Rocek, M., Hyperkähler metrics and supersymmetry, Commun. Math. Phys., 108, 535 (1987) ·Zbl 0612.53043
[13]Kachru, S.; Vafa, C., Exact results for \(N = 2\) compactifications of heterotic strings, Nucl. Phys. B, 450, 69 (1995) ·Zbl 0957.14509
[14]Strominger, A., Heterotic solitons, Nucl. Phys. B, 343, 167 (1990)
[15]Dabholkar, A., Ten-dimensional heterotic string as a soliton, Phys. Lett. B, 357, 307 (1995)
[16]Hull, C. M., String-String duality in ten dimensions, Phys. Lett. B, 357, 545 (1995)
[17]Polchinski, J.; Witten, E., Evidence for heterotic — type I string duality, Nucl. Phys. B, 460, 525 (1996), preceding article in this issu ·Zbl 1004.81526
[18]A. Tseytlin, On SO(32) heterotic — type I superstring duality in ten dimensions, hep-th/9510173.; A. Tseytlin, On SO(32) heterotic — type I superstring duality in ten dimensions, hep-th/9510173.
[19]Polchinski, J., Combinatorics of boundaries in string theory, Phys. Rev. D, 50, 6041 (1994)
[20]Marcus, N.; Sagnotti, A., Tree level constraints on gauge groups for type-I superstrings, Phys. Lett. B, 119, 97 (1982)
[21]Witten, E., Bound states of strings and \(p\)-branes, Nucl. Phys. B, 460, 335 (1996) ·Zbl 1003.81527
[22]Corrigan, E.; Goddard, P., Construction of instanton and monopole solutions and reciprocity, Ann. Phys., 154, 253 (1984) ·Zbl 0535.58025
[23]Christ, N. H.; Weinberg, E. J.; Stanton, N. K., General self-dual Yang-Mills solutions, Phys. Rev. D, 18, 2013 (1978)
[24]Duff, M. J., Strong/weak coupling duality from the dual string, Nucl. Phys. B, 442, 47 (1995) ·Zbl 0990.81661
[25]Sen, A., String string duality conjecture in six dimensions and charged solitonic strings, Nucl. Phys. B, 450, 103 (1995) ·Zbl 0982.81520
[26]Witten, E.; Olive, D., Supersymmetry algebras that include central charges, Phys. Lett. B, 78, 97 (1978)
[27]Seiberg, N.; Witten, E., Electric-magnetic duality, monopole condensation, and confinement in \(N = 2\) supersymmetric Yang-Mills theory, Nucl. Phys. B, 426, 19 (1994) ·Zbl 0996.81510
[28]Dabholkar, A.; Harvey, J. A., Non-renormalization of the superstring tension, Phys. Rev. Lett., 63, 478 (1989)
[29]Schellekens, A. N.; Warner, N. P., Anomalies, characters and strings, Nucl. Phys. B, 287, 317 (1987) ·Zbl 0942.53510
[30]Witten, E., The index of the Dirac operator in loop space, (Landwebber, P., Elliptic curves and modular forms in algebraic topology (1988), Springer: Springer Berlin) ·Zbl 0679.58045
[31]Lerche, W., Elliptic index and superstring effective action, Nucl. Phys. B, 308, 102 (1988)
[32]Eguchi, T.; Ooguri, H.; Taormina, A.; Yang, S. K., Superconformal algebras and string compactification on manifolds with \(SU (n)\) holonomy, Nucl. Phys. B, 315, 193 (1989)
[33]Sen, A.; Schwarz, J. H., Duality symmetries of 4-D heterotic strings, Phys. Lett. B, 312, 105 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp