Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

An algebraic framework for group duality.(English)Zbl 0933.16043

A multiplier Hopf algebra \(A\) is a generalization of the notion of a Hopf algebra obtained if we drop the assumption that \(A\) has an identity and if we allow the comultiplication \(\Delta\) to have values in the multiplier algebra \(M(A\otimes A)\). The motivating example is the algebra of complex functions with finite support on a group with comultiplication defined as the dual to the product in the group. There is a natural notion of left and right invariance for linear functionals for multiplier Hopf algebras (the analog of integrals in Hopf algebra theory). It is shown that if such invariant functionals exist, they are unique up to a scalar and faithful. If the multiplier Hopf algebra \((A,\Delta)\) is regular (i.e., it has invertible antipode) and has invariant functionals, a natural dual \((\widehat A,\widehat\Delta)\) is constructed, and this is also proved to be a regular multiplier Hopf algebra with invariant functionals. There is a natural isomorphism between the dual of \((\widehat A,\widehat\Delta)\) and \((A,\Delta)\). Several aspects of abstract harmonic analysis like the Fourier transform and Plancherel’s formula can be generalized in this framework. This duality generalizes the usual duality for finite dimensional Hopf algebras, and also the duality between discrete quantum groups and compact quantum groups. Thus the duality between compact Abelian groups and discrete Abelian groups is a particular case. An extension of this duality is obtained in the non-Abelian case, but within one category. Several nice examples of Hopf algebras are presented.

MSC:

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
22D35 Duality theorems for locally compact groups
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
43A22 Homomorphisms and multipliers of function spaces on groups, semigroups, etc.

Cite

References:

[1]Abe, E., Hopf Algebras (1977), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[2]Dijkhuizen, M.; Koornwinder, T., CQG algebras: A direct algebraic approach to compact quantum groups, Lett. Math. Phys., 32, 315-330 (1994) ·Zbl 0861.17005
[3]B. Drabant, A. Van Daele, Pairing and the quantum double of multiplier Hopf algebras, K.U. Leuven, 1996; B. Drabant, A. Van Daele, Pairing and the quantum double of multiplier Hopf algebras, K.U. Leuven, 1996 ·Zbl 0993.16024
[4]Drinfel’d, V. G., Quantum groups, Proc. ICM Berkeley, 798-820 (1986) ·Zbl 0617.16004
[5]Effros, E.; Ruan, Z.-J., Discrete quantum groups I. The Haar measure, Int. J. Math., 5, 681-723 (1994) ·Zbl 0824.17020
[6]Enock, M.; Schwartz, J. M., Kac Algebras and the Duality of Locally Compact Groups (1992), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0805.22003
[7]Kustermans, J.; Van Daele, A., C*-algebraic quantum groups arising from algebraic quantum groups, Int. J. Math., 8, 1067-1139 (1997) ·Zbl 1009.46038
[8]Masuda, T.; Nakagami, Y., A von Neumann algebra framework for the duality of quantum groups, Publ. RIMS, Kyoto Univ., 30, 799-850 (1994) ·Zbl 0839.46055
[9]T. Masuda, Y. Nakagami, S. L. Woronowicz; T. Masuda, Y. Nakagami, S. L. Woronowicz
[10]Pedersen, G. K., C*-Algebras and their Automorphism Groups (1979), Academic Press: Academic Press London ·Zbl 0416.46043
[11]Podlés, P.; Woronowicz, S. L., Quantum deformation of Lorentz group, Comm. Math. Phys., 130, 381-431 (1990) ·Zbl 0703.22018
[12]Sweedler, E. M., Hopf Algebras (1969), Benjamin ·Zbl 0194.32901
[13]Van Daele, A., Dual pairs of Hopf *-algebras, Bull. London Math. Soc., 25, 209-230 (1993) ·Zbl 0796.16034
[14]Van Daele, A., The Haar measure on finite quantum groups, Proc. Amer. Math. Soc., 125, 3489-3500 (1997) ·Zbl 0888.16023
[15]Van Daele, A., The Haar measure on compact quantum groups, Proc. Amer. Math. Soc., 123, 3125-3128 (1995) ·Zbl 0844.46032
[16]Van Daele, A., Multiplier Hopf algebras, Trans. Amer. Math. Soc., 342, 917-932 (1994) ·Zbl 0809.16047
[17]Van Daele, A., Discrete quantum groups, J. Algebra, 180, 431-444 (1996) ·Zbl 0864.17012
[18]Van Daele, A., Multiplier Hopf algebras and duality, Quantum Groups and Quantum Spaces. Quantum Groups and Quantum Spaces, Banach Center Publications, 40 (1997), p. 51-58 ·Zbl 0872.17008
[19]A. Van Daele, Y. Zhang, Multiplier Hopf algebras of discrete type, K.U. Leuven and University of Antwerp, 1996,J. Algebra.; A. Van Daele, Y. Zhang, Multiplier Hopf algebras of discrete type, K.U. Leuven and University of Antwerp, 1996,J. Algebra. ·Zbl 0931.16023
[20]B. Drabant, A. Van Daele, Y. Zhang, Actions of multiplier Hopf algebras, K.U. Leuven, 1997,Comm. Algebra.; B. Drabant, A. Van Daele, Y. Zhang, Actions of multiplier Hopf algebras, K.U. Leuven, 1997,Comm. Algebra. ·Zbl 0951.16013
[21]Woronowicz, S. L., Compact matrix pseudogroups, Comm. Math. Phys., 111, 613-665 (1987) ·Zbl 0627.58034
[22]S. L. Woronowicz, Compact quantum groups, University of Warsaw, 1992; S. L. Woronowicz, Compact quantum groups, University of Warsaw, 1992 ·Zbl 0759.17009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp