[1] | Arakawa, A., Computational design for long-term numerical integration of the equation of fluid motion: Two-dimensional incompressible flow, J. Comput. Phys., 1, 119 (1966) ·Zbl 0147.44202 |
[2] | Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182 (1965) ·Zbl 1180.76043 |
[3] | Ghosal, S., An analysis of numerical errors in large-eddy simulations of turbulence, J. Comput. Phys., 125, 187 (1996) ·Zbl 0848.76043 |
[4] | A-Domis, M., Large-eddy simulation of a passive scalar in isotropic turbulence, J. Fluid Mech., 104, 55 (1981) ·Zbl 0456.76036 |
[5] | Kajishima, T., Conservation properties of finite difference method, Trans. JSME, 60-574B, 2058 (1994) |
[6] | Beaudan, P.; Moin, P., Flow Past a Circular Cylinder at Sub-Critical Reynolds Number (1995) |
[7] | Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, S. A., Spectral Methods in Fluid Dynamics (1988) ·Zbl 0658.76001 |
[8] | Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 308 (1985) ·Zbl 0582.76038 |
[9] | Moin, P.; Kim, J., Numerical investigation of turbulent channel flow, J. Fluid Mech., 118, 341 (1982) ·Zbl 0491.76058 |
[10] | Horiuti, K., Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow, J. Comput. Phys., 71, 343 (1987) ·Zbl 0617.76062 |
[11] | Horiuti, K., Anisotropic representation of the Reynolds stress in large eddy simulation of turbulent channel flow, Proc. of Int. Symp. Comp. Fluid Dynamics, Nagoya, 233 (1989) |
[12] | Piacsek, S. A.; Williams, G. P., Conservative properties of convection difference schemes, J. Comput. Phys., 6, 392 (1970) ·Zbl 0221.65185 |
[13] | Zang, Y.; Street, R. L.; Koseff, J. R., A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates, J. Comput. Phys., 114, 18 (1994) ·Zbl 0809.76069 |
[14] | Rhie, C. M.; Chow, W. L., A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J., 21, 1525 (1983) ·Zbl 0528.76044 |
[15] | Moffat, H. K., Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18, 1 (1964) ·Zbl 0118.20501 |
[16] | Wray, A., Private communication (1986) |
[17] | Malik, T. R.; Zang, T. A.; Hussaini, M. Y., A spectral collocation method for the Navier-Stokes equations, J. Comput. Phys., 61, 64 (1985) ·Zbl 0573.76036 |
[18] | Orszag, S. A., Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50, 689 (1971) ·Zbl 0237.76027 |
[19] | Dukowicz, J. K.; Dvinsky, A. S., Approximation as a high order splitting for the implicit incompressible flow equations, J. Comput. Phys., 102, 336 (1992) ·Zbl 0760.76059 |
[20] | Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760 (1991) ·Zbl 0825.76334 |
[21] | Lilly, D., A proposed modification of the Germano subgrid scale closure method, Phys. Fluids A, 4, 633 (1992) |
[22] | Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133 (1987) ·Zbl 0616.76071 |
[23] | Kleiser, L.; Schumann, U., Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flows, Proceedings, 3rd-GAMM Conf. on Numerical Methods in Fluid Mechanics, 165 (1980) ·Zbl 0463.76020 |
[24] | Werne, J., Incompressibility and no-slip boundaries in the Chebyshev-tau approximation: Correction to Kleiser and Schumann’s influence-matrix solution, J. Comput. Phys., 120, 260 (1995) ·Zbl 0836.76076 |
[25] | Hussain, A. K.M. F.; Reynolds, W. C., The Mechanics of a Perturbation Wave in Turbulent Shear Flow (1970) |