Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A sparse approximate inverse preconditioner for nonsymmetric linear systems.(English)Zbl 0930.65027

The authors construct preconditioners for Krylov space iterative methods applied to the matrix equation \(Ax=b\) with sparse nonsymmetric matrix \(A\). These preconditioners are based on approximating \(A^{-1}\) directly with a product of sparse upper- and lower-triangular matrices rather than approximating \(A\) with triangular matrices that must be inverted during each iteration. Because the Krylov space iterations can be carried out without inverting matrices, parallel implementation is potentially more efficient than for preconditioners approximating \(A\).
This work extends earlier work ofM. Benzi, C. D. Meyer andJ. Tuma [SIAM J. Sci. Comput. 17, No. 5, 1135-1149 (1996;Zbl 0856.65019)]. Preconditioners based on approximating \(A^{-1}\) appear in the literature, but the most successful ones have been based on a minimization process. In contrast, the authors discuss a construction based on a conjugate Gram-Schmidt process that would result in a direct solution method were small terms not dropped during construction. The authors draw heavily on the technology of incomplete factorization in their presentation, and the effectiveness (in terms of numbers of iterations) of the preconditioners presented in the paper is similar to incomplete LU preconditioners; however, the authors present a simple \(3\times 3\) matrix example to show that the incomplete inverse factorization is not algebraically equivalent to incomplete LU factorization. The authors also present and prove a characterization of fill-in of the triangular factors.
Finally, the authors present an extensive study of the approximate inverse preconditioner applied to matrices selected from collections of challenging test matrices. Three representative iterative solution methods: Bi-CGSTAB, QMR, and GMRES were chosen and results using incomplete LU preconditioning were compared with results using approximate inverse preconditioning. The overall conclusion the authors present is that the approximate inverse preconditioner is of similar quality and effectiveness as the incomplete LU preconditioner, both in numbers of iterations and computation time (for scalar implementation), and requires only a modest increase in time for constructing the preconditioner. The approximate inverse preconditioner promises much more efficient implementation on parallel computers than the incomplete LU preconditioner.

MSC:

65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices
65Y05 Parallel numerical computation
65F35 Numerical computation of matrix norms, conditioning, scaling

Citations:

Zbl 0856.65019

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp