Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Excited states by analytic continuation of TBA equations.(English)Zbl 0925.82044

Summary: We suggest an approach to the problem of finding integral equations for the excited states of an integrable model, starting from the thermodynamic Bethe ansatz equations for its ground state. The idea relies on analytic continuation through complex values of the coupling constant, and an analysis of the monodromies that the equations and their solutions undergo. For the scaling Lee-Yang model, we find equations in this way for the one- and two-particle states in the spin-zero sector, and suggest various generalisations. Numerical results show excellent agreement with the truncated conformal space approach, and we also treat some of the ultraviolet and infrared asymptotics analytically.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
82B23 Exactly solvable models; Bethe ansatz

Cite

References:

[1]Zamolodchikov, Al. B., Thermodynamic Bethe Ansatz in Relativistic Models. Scaling 3-state Potts and Lee-Yang Models, Nucl. Phys. B, 342, 695 (1990)
[2]Klassen, T. R.; Melzer, E., Spectral flow between conformal field theories in (1+1) dimensions, Nucl Phys. B, 370, 511 (1992)
[3]Martins, M. J., Complex excitations in the thermodynamic Bethe ansatz approach, Phys. Rev. Lett., 67, 39 (1991) ·Zbl 0990.82516
[4]Fendley, P., Excited state thermodynamics, Nucl. Phys. B, 374, 667 (1992) ·Zbl 0992.81516
[5]Bender, C. M.; Wu, T. T., Anharmonic oscillator, Phys. Rev., 184, 1231 (1969)
[6]Klassen, T. R.; Melzer, E., The thermodynamics of purely elastic scattering theories and conformal perturbation theory, Nucl. Phys. B, 350, 635 (1991)
[7]Fateev, V. A., the exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories, Phys. Lett. B, 324, 45 (1994)
[8]Cardy, J. L.; Mussardo, G., \(S\) matrix of the Yang-Lee edge singularity in two-dimensions, Phys. Lett. B, 225, 275 (1989)
[9]Eden, R. J.; Landshoff, P. V.; Olive, D. I.; Polkinghorne, J. C., The analytic \(S\)-matrix (1966), Cambridge Univ. Press: Cambridge Univ. Press Cambridge ·Zbl 0139.46204
[10]Yurov, V. P.; Zamolodchikov, Al. B., Truncated conformal space approach to the scaling Lee-Yang model, Int. J. Mod. Phys. A, 5, 3221 (1990)
[11]Zamolodchikov, Al. B., On the thermodynamic Bethe ansatz equations for the reflectionless ADE scattering theories, Phys. Lett. B, 253, 391 (1991)
[12]Klassen, T. R.; Melzer, E., On the relation between scattering amplitudes and finite-size mass corrections in QFT, Nucl. Phys. B, 362, 329 (1991)
[13]Lässig, M.; Mussardo, G., Hilbert space and structure constants of descendant fields in two-dimensional conformal theories, Computer Phys. Comm., 66, 71 (1991) ·Zbl 0997.65525
[14]Kirillov, A. N., Dilogarithm identities, Prog. Theor. Phys. Supp., 118, 61 (1995) ·Zbl 0894.11052
[15]Bazhanov, V. V.; Lukyanov, S. L.; Zamolodchikov, A. B., Integrable quantum field theories in finite volume: excited state energies (July 1996), preprint CLNS 96/1416, LPM-96/24, hep-th/9607099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp