Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Derivation of Cahn-Hilliard equations from Ginzburg-Landau models.(English)Zbl 0924.60065

The authors derive the generalized Cahn-Hilliard equation as a hydrodynamic scaling limit from a stochastic Ginzburg-Landau model [see alsoC. Collet,F. Dunlop andT. Gobron, J. Stat. Phys. 79, 215-229 (1995) andM. Z. Guo,G. C. Papanicolaou andS. R. S. Varadhan, Commun. Math. Phys. 118, No. 1, 31-59 (1988;Zbl 0652.60107)]. The approach is analogous to the derivation of reaction-diffusion equations as the hydrodynamic limit of a scale depending on Glauber and Kawasaki dynamics [see alsoA. de Masi,P. A. Ferrari andJ. L. Lebowitz, J. Stat. Phys. 44, 589-644 (1986;Zbl 0629.60107)]. A large deviation principle is also proved and the explicit formula for the rate function is given [see alsoM. D. Donsker andS. R. S. Varadhan, Commun. Pure Appl. Math. 42, No. 3, 243-270 (1989;Zbl 0780.60027) andC. Kipnis,S. Olla andS. R. S. Varadhan, Commun. Pure Appl. Math. 42, No. 2, 115-137 (1989;Zbl 0644.76001)].

MSC:

60J60 Diffusion processes
82C22 Interacting particle systems in time-dependent statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
35Q55 NLS equations (nonlinear Schrödinger equations)
60F10 Large deviations

Cite

References:

[1][BKL] O. Benois, C. Kipnis, and C. Landim, Large deviations from the hydrodynamical limit of mean zero asymmetric zero-range processes,Stoch. Proc. Applic. 55:65–89 (1995). ·Zbl 0822.60091 ·doi:10.1016/0304-4149(95)91543-A
[2][CDG] P. Collet, F. Dunlop, and T. Gobron, Conservative Langevin dynamics of solid-on-solid interface,J. Stat. Phys. 79:215–229 (1995). ·Zbl 1081.82597 ·doi:10.1007/BF02179387
[3][DFL] A. De Masi, P. Ferrari, and J. L. Lebowitz, Reaction-diffusion equations for interacting particle systems,J. Stat. Phys. 44:589–644 (1986). ·Zbl 0629.60107 ·doi:10.1007/BF01011311
[4][DOPT] A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kac potential I. Mesoscopic and macroscopic limits, interface dynamics,Nonlinearity 7:633–696 (1994). ·Zbl 0797.60088 ·doi:10.1088/0951-7715/7/3/001
[5][DV] M. D. Donsker and S. R. S. Varadhan, Large deviations from a hydrodynamic scaling limit,Comm. Pure Appl. Math. 42:243–270 (1989). ·Zbl 0780.60027 ·doi:10.1002/cpa.3160420303
[6][FS] T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau {\(\Delta\)} interface model, preprint (1994).
[7][JLV] D. Gabrielli, G. Jona-Lasinio, C. Landim, and M. E. Vares, Microscopic reversibility and thermodynamic fluctuations, to appear in The proceedings of the conference ”Boltzmann’s Legacy” Roma, 1994.
[8][GL] G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions,Phys. Rev. Let. 76:1094–1097 (1996). ·doi:10.1103/PhysRevLett.76.1094
[9][GPV] M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan, Nonlinear diffusion for a system with nearest neighbor interactions,Commun. Math. Phys. 118:31–59 (1988). ·Zbl 0652.60107 ·doi:10.1007/BF01218476
[10][JLV] G. Jona-Lasinio, C. Landim, and M. E. Vares, Large deviations for a reaction-diffusion model,Prob. Th. Rel. Fields 97:339–361 (1993). ·Zbl 0792.60096 ·doi:10.1007/BF01195070
[11][KOV] C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviations for simple exclusion processes,Comm. Pure Appl. Math. 42:115–137 (1989). ·Zbl 0644.76001 ·doi:10.1002/cpa.3160420202
[12][LY] C. Landim and H. T. Yau, Large deviations of interacting particle systems in infinite volume,Comm. Pure Appl. Math. 48:339–379 (1995). ·Zbl 0822.60092 ·doi:10.1002/cpa.3160480401
[13][S] H. Spohn, Interface motion in models with stochastic dynamics,J. Stat. Phys. 71:1081–1132 (1993). ·Zbl 0935.82546 ·doi:10.1007/BF01049962
[14][V] S. R. S. Varadhan,Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 46, 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp