Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements.(English)Zbl 0923.65064

Authors’ abstract: For the groundwater flow problem (which corresponds to the Darcy flow model), we show how to produce a scheme with one unknown per element, starting from a mixed formulation discretized with the Raviart Thomas triangular elements of lowest order. The aim is here to obtain a new formulation with one unknown per element by elimination of the velocity variables \({\mathbf q} = -k\text{ grad }P\), without any restriction concerning the computation of the velocity field. In the first part, we describe the triangular mixed finite element method used for solving Darcy’s and mass balance equations.
In the second part, we study the elliptic-parabolic problem; we describe the new formulation of the problem in order to use mixed finite elements (MFE) with less unknowns without any specific numerical integration. Finally, we compare the computational effort of the MFE method with the new formulation for different triangulations using numerical experiments. In this work, we show that the new formulation can be seen as a general formulation which can be equivalent to the finite volume or the finite difference methods in some particular cases.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
35K15 Initial value problems for second-order parabolic equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Cite

References:

[1]Raviart, P. A.; Thomas, J. M., A mixed hybrid finite element method for the second order elliptic problems, Mathematical Aspects of the Finite Element Method, Lectures Notes in Mathematics (1977) ·Zbl 0362.65089
[2]Thomas, J. M., Sur l’Analyse Numérique des Méthodes d’Eléments Finis Hybrides et Mixtes (1977)
[3]Durlofsky, L. J., Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities, Water Resour. Res., 30, 965 (1994)
[4]P. Ackerer, R. Mosé, and, K. Semra, Natural tracer test simulation by stochastic particle tracking method, in, Proc. Intern. Conf. on Transport and Mass Exchange Processes in Sand and Gravel Aquifers, Ottawa, October 1-4, 1990, edited by, G. Moltyaner, p, 595.; P. Ackerer, R. Mosé, and, K. Semra, Natural tracer test simulation by stochastic particle tracking method, in, Proc. Intern. Conf. on Transport and Mass Exchange Processes in Sand and Gravel Aquifers, Ottawa, October 1-4, 1990, edited by, G. Moltyaner, p, 595.
[5]Mose, R., Application de la méthode des éléments finis mixtes hybrides et de la “marche au hasard” pour la modélisation de l’écoulement et du transport de masse en milieux poreux (1990)
[6]Mose, R.; Siegel, P.; Ackerer, P.; Chavent, G., Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?, Water Resour. Res., 30, 3001 (1994)
[7]Semra, K., Modélisation tridimensionnelle du transport d’un traceur en milieu poreux saturé hétérogène. Evaluation des théories stochastiques (1994)
[8]Weiser, A.; Wheeler, M. F., On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal., 25, 351 (1988) ·Zbl 0644.65062
[9]Chavent, G.; Roberts, J. E., A unified physical presentation of mixed, mixed hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems, Adv. Water Resour., 14, 329 (1991)
[10]Cordes, C.; Kinzelbach, W., Comment on “Application of the mixed hybrid finite approximation in a groundwater flow model: Luxury or necessity?” by Moséet al., Water Resour. Res., 32, 1905 (1996)
[11]Baranger, J.; Maitre, J. F.; Oudin, F., Application de la théorie des éléments finis mixtes à l’étude d’une classe de schémas aux volumes-différences finis pour les problémes elliptiques, C.R. Acad. Sci. Paris Sér. I, 319, 401 (1994) ·Zbl 0804.65102
[12]Ackerer, P.; Mose, R.; Siegel, P., Reply to the Comment on “Application of the mixed hybrid finite approximation in a groundwater flow model: Luxury or necessity?” by Moséet al., Water Resour. Res., 32, 1911 (1996)
[13]Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Method (1991) ·Zbl 0788.73002
[14]C. Cordes, and, M. Putti, Triangular mixed finite elements versus finite differences and finite volumes in groundwater flow modeling, in, Proc. Computational Methods in Subsurface Flow and Transport Problems, Cancun, Mexico (Comput. Mech, Southhampton, 1996), p, 61.; C. Cordes, and, M. Putti, Triangular mixed finite elements versus finite differences and finite volumes in groundwater flow modeling, in, Proc. Computational Methods in Subsurface Flow and Transport Problems, Cancun, Mexico (Comput. Mech, Southhampton, 1996), p, 61.
[15]Barret, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J. M.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van Der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1994)
[16]G. Chavent, A. Younes, R. Mose, and, Ph. Ackerer, On different formulations of mixed finite element methods, in preparation.; G. Chavent, A. Younes, R. Mose, and, Ph. Ackerer, On different formulations of mixed finite element methods, in preparation. ·Zbl 0923.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp