[1] | Beilinson, A. A., Coherent sheaves on \(P^n\) and problems of linear algebra, Funct. Anal. Appl., 12, 214-216 (1979) ·Zbl 0424.14003 |
[2] | Bökstedt, M.; Neeman, A., Homotopy limits in triangulated categories, Comp. Math., 86, 209-234 (1993) ·Zbl 0802.18008 |
[3] | Bondal, A. I.; Kapranov, M. M., Enhanced triangulated categories, Math. USSR Sbornik, 70, 93-107 (1991) ·Zbl 0729.18008 |
[4] | Deligne, P., Cohomologie à supports propres, (Lecture Notes in Mathematics, vol. 305 (1973), Springer: Springer Berlin), 252-480, Exposé XVII, SGA 4 |
[5] | Faith, C., Algebra: Rings, Modules and Categories I, (Grundlehren, vol. 190 (1973), Springer: Springer Berlin) ·Zbl 0266.16001 |
[6] | Gabriel, P., Sur les catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) ·Zbl 0201.35602 |
[7] | Gabriel, P.; Roiter, A., Representations of finite-dimensional algebras, (Kostrikin, A. I.; Shafarevich, I. V., Algebra VIII. Algebra VIII, Encyclopaedia of the Mathematical Sciences, vol. 73 (1992), Springer: Springer Berlin) ·Zbl 0839.16001 |
[8] | Gabriel, P.; Zisman, M., Calculus of Fractions and Homotopy Theory (1967), Springer: Springer Berlin ·Zbl 0186.56802 |
[9] | Goodwillie, T., Cyclic homology, derivations, and the free loopspace, Topology, 24, 187-215 (1985) ·Zbl 0569.16021 |
[10] | Grothendieck, A., Groupes de classes des catégories abéliennes et triangulées, Complexes parfaits, SGA 5, Exposé VIII, (Lecture Notes in Mathematics, vol. 589 (1977), Springer: Springer Berlin), 351-371 ·Zbl 0359.18013 |
[11] | Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 339-389 (1987) ·Zbl 0626.16008 |
[12] | Heller, A., The loop space functor in homological algebra, Trans. Am. Math. Soc., 96, 382-394 (1960) ·Zbl 0096.25502 |
[13] | Kapranov, M. M., On the derived categories of sheaves on some homogeneous spaces, Invent. Math., 92, 479-508 (1988) ·Zbl 0651.18008 |
[14] | Kassel, Chr., Cyclic homology, comodules and mixed complexes, J. Algebra, 107, 195-216 (1987) ·Zbl 0617.16015 |
[15] | Kassel, Chr., \(K- théorie\) algébrique et cohomologie cyclique bivariantes, C.R. Acad. Sci. Paris Sér. 1, 306, 799-802 (1988) ·Zbl 0646.18005 |
[16] | Kassel, Chr., Caractère de Chern bivariant, \(K\)-Theory, 3, 367-400 (1989) ·Zbl 0701.18008 |
[17] | Keller, B., Chain complexes and stable categories, Manus. Math., 67, 379-417 (1990) ·Zbl 0753.18005 |
[18] | Keller, B., Deriving DG categories, Ann. Scient. Ec. Norm. Sup., \(4^e\) série, 27, 63-102 (1994) ·Zbl 0799.18007 |
[19] | Keller, B., Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra, 123, 223-273 (1998) ·Zbl 0890.18007 |
[20] | B. Keller, Cyclic homology of exact categories and schemes, Preprint, in preparation.; B. Keller, Cyclic homology of exact categories and schemes, Preprint, in preparation. |
[21] | Keller, B.; Vossieck, D., Sous les catégories dérivées, C.R. Acad. Sci. Paris, 305, 225-228 (1987) ·Zbl 0628.18003 |
[22] | Loday, J.-L., Cyclic homology: a survey, Banach Center Publications, 18, 285-307 (1986) ·Zbl 0637.16013 |
[23] | Loday, J.-L., Cyclic Homology, (Grundlehren, vol. 301 (1992), Springer: Springer Berlin) ·Zbl 0719.19002 |
[24] | MacLane, S., Homology (1963), Springer: Springer Berlin ·Zbl 0133.26502 |
[25] | Matsumura, H., Commutative ring theory, (Cambridge Studies in Advanced Mathematics, vol. 8 (1986), Cambridge University Press: Cambridge University Press Cambridge) ·Zbl 0211.06501 |
[26] | McCarthy, R., The cyclic homology of an exact category, J. Pure Appl. Algebra, 93, 251-296 (1994) ·Zbl 0807.19002 |
[27] | Mitchell, B., Rings with several objects, Adv. Math., 8, 1-161 (1972) ·Zbl 0232.18009 |
[28] | Neeman, A., The derived category of an exact category, J. Algebra, 135, 388-394 (1990) ·Zbl 0753.18004 |
[29] | Neeman, A., The connection between the \(K\)-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Scient. Éc. Norm. Sup., 25, 547-566 (1992) ·Zbl 0868.19001 |
[30] | Quillen, D., Higher algebraic \(K\)-theory I, (Lecture Notes in Mathematics, vol. 341 (1973), Springer: Springer Berlin), 85-147 ·Zbl 0292.18004 |
[31] | Ravenel, D. C., Localization with respect to certain periodic homology theories, Amer. J. Math., 106, 351-414 (1984) ·Zbl 0586.55003 |
[32] | Thomason, R. W.; Trobaugh, T., Higher algebraic \(K\)-theory of schemes and of derived categories, (The Grothendieck Festschrift, III. The Grothendieck Festschrift, III, Progress in Mathematics, vol. 87 (1990), Birkhäuser: Birkhäuser Basel), 247-436 |
[33] | Vigué-Poirrier, M.; Burghelea, D., A model for cyclic homology and algebraic \(K\)-theory of l-connected topological spaces, J. Diff. Geom., 22, 243-253 (1985) ·Zbl 0595.55009 |
[34] | Verdier, J.-L., Catégories dérivées, état 0, SGA 4 1/2, (Lecture Notes in Mathematics, vol. 569 (1977), Springer: Springer Berlin), 262-311 ·Zbl 0407.18008 |
[35] | Verdier, J.-L., Des catégories dérivées des catégories abéliennes, Astérisque, 239, 1-253 (1996) ·Zbl 0882.18010 |
[36] | Waldhausen, F., Algebraic \(K\)-theory of spaces, (Lecture Notes in Mathematics, vol. 1126 (1985), Springer: Springer Berlin), 318-419 ·Zbl 0579.18006 |
[37] | Weibel, C. A., Cyclic homology for schemes, (Proc. Amer. Math. Soc., 124 (1996)), 1655-1662 ·Zbl 0855.19002 |
[38] | Weibel, C. A.; Yao, D., Localization for the \(K\)-theory of commutative rings, (Algebraic \(K\)-theory, Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure. Algebraic \(K\)-theory, Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure, 1989. Algebraic \(K\)-theory, Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure. Algebraic \(K\)-theory, Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure, 1989, Contemporary Mathematics, 125 (1992)), 219-230 ·Zbl 0780.19007 |
[39] | Yao, D., Higher algebraic \(K\)-theory of admissible abelian categories and localization theorems, J. Pure Appl. Algebra, 77, 263-339 (1992) ·Zbl 0746.19006 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.