Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the cyclic homology of exact categories.(English)Zbl 0923.19004

R. McCarthy [J. Pure Appl. Algebra 93, No. 3, 251-296 (1994;Zbl 0807.19002)] defined the cyclic homology of an exact category. However, as it was shown by the author, that theory cannot be both compatible with localization and invariance under functors inducing equivalences.
That is the article’s motivation for defining a new theory for which these properties hold. Then that new theory is computed for a number of categories.

MSC:

19D55 \(K\)-theory and homology; cyclic homology and cohomology
18E10 Abelian categories, Grothendieck categories
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
18E30 Derived categories, triangulated categories (MSC2010)
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)

Citations:

Zbl 0807.19002

Cite

References:

[1]Beilinson, A. A., Coherent sheaves on \(P^n\) and problems of linear algebra, Funct. Anal. Appl., 12, 214-216 (1979) ·Zbl 0424.14003
[2]Bökstedt, M.; Neeman, A., Homotopy limits in triangulated categories, Comp. Math., 86, 209-234 (1993) ·Zbl 0802.18008
[3]Bondal, A. I.; Kapranov, M. M., Enhanced triangulated categories, Math. USSR Sbornik, 70, 93-107 (1991) ·Zbl 0729.18008
[4]Deligne, P., Cohomologie à supports propres, (Lecture Notes in Mathematics, vol. 305 (1973), Springer: Springer Berlin), 252-480, Exposé XVII, SGA 4
[5]Faith, C., Algebra: Rings, Modules and Categories I, (Grundlehren, vol. 190 (1973), Springer: Springer Berlin) ·Zbl 0266.16001
[6]Gabriel, P., Sur les catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) ·Zbl 0201.35602
[7]Gabriel, P.; Roiter, A., Representations of finite-dimensional algebras, (Kostrikin, A. I.; Shafarevich, I. V., Algebra VIII. Algebra VIII, Encyclopaedia of the Mathematical Sciences, vol. 73 (1992), Springer: Springer Berlin) ·Zbl 0839.16001
[8]Gabriel, P.; Zisman, M., Calculus of Fractions and Homotopy Theory (1967), Springer: Springer Berlin ·Zbl 0186.56802
[9]Goodwillie, T., Cyclic homology, derivations, and the free loopspace, Topology, 24, 187-215 (1985) ·Zbl 0569.16021
[10]Grothendieck, A., Groupes de classes des catégories abéliennes et triangulées, Complexes parfaits, SGA 5, Exposé VIII, (Lecture Notes in Mathematics, vol. 589 (1977), Springer: Springer Berlin), 351-371 ·Zbl 0359.18013
[11]Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 339-389 (1987) ·Zbl 0626.16008
[12]Heller, A., The loop space functor in homological algebra, Trans. Am. Math. Soc., 96, 382-394 (1960) ·Zbl 0096.25502
[13]Kapranov, M. M., On the derived categories of sheaves on some homogeneous spaces, Invent. Math., 92, 479-508 (1988) ·Zbl 0651.18008
[14]Kassel, Chr., Cyclic homology, comodules and mixed complexes, J. Algebra, 107, 195-216 (1987) ·Zbl 0617.16015
[15]Kassel, Chr., \(K- théorie\) algébrique et cohomologie cyclique bivariantes, C.R. Acad. Sci. Paris Sér. 1, 306, 799-802 (1988) ·Zbl 0646.18005
[16]Kassel, Chr., Caractère de Chern bivariant, \(K\)-Theory, 3, 367-400 (1989) ·Zbl 0701.18008
[17]Keller, B., Chain complexes and stable categories, Manus. Math., 67, 379-417 (1990) ·Zbl 0753.18005
[18]Keller, B., Deriving DG categories, Ann. Scient. Ec. Norm. Sup., \(4^e\) série, 27, 63-102 (1994) ·Zbl 0799.18007
[19]Keller, B., Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra, 123, 223-273 (1998) ·Zbl 0890.18007
[20]B. Keller, Cyclic homology of exact categories and schemes, Preprint, in preparation.; B. Keller, Cyclic homology of exact categories and schemes, Preprint, in preparation.
[21]Keller, B.; Vossieck, D., Sous les catégories dérivées, C.R. Acad. Sci. Paris, 305, 225-228 (1987) ·Zbl 0628.18003
[22]Loday, J.-L., Cyclic homology: a survey, Banach Center Publications, 18, 285-307 (1986) ·Zbl 0637.16013
[23]Loday, J.-L., Cyclic Homology, (Grundlehren, vol. 301 (1992), Springer: Springer Berlin) ·Zbl 0719.19002
[24]MacLane, S., Homology (1963), Springer: Springer Berlin ·Zbl 0133.26502
[25]Matsumura, H., Commutative ring theory, (Cambridge Studies in Advanced Mathematics, vol. 8 (1986), Cambridge University Press: Cambridge University Press Cambridge) ·Zbl 0211.06501
[26]McCarthy, R., The cyclic homology of an exact category, J. Pure Appl. Algebra, 93, 251-296 (1994) ·Zbl 0807.19002
[27]Mitchell, B., Rings with several objects, Adv. Math., 8, 1-161 (1972) ·Zbl 0232.18009
[28]Neeman, A., The derived category of an exact category, J. Algebra, 135, 388-394 (1990) ·Zbl 0753.18004
[29]Neeman, A., The connection between the \(K\)-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Scient. Éc. Norm. Sup., 25, 547-566 (1992) ·Zbl 0868.19001
[30]Quillen, D., Higher algebraic \(K\)-theory I, (Lecture Notes in Mathematics, vol. 341 (1973), Springer: Springer Berlin), 85-147 ·Zbl 0292.18004
[31]Ravenel, D. C., Localization with respect to certain periodic homology theories, Amer. J. Math., 106, 351-414 (1984) ·Zbl 0586.55003
[32]Thomason, R. W.; Trobaugh, T., Higher algebraic \(K\)-theory of schemes and of derived categories, (The Grothendieck Festschrift, III. The Grothendieck Festschrift, III, Progress in Mathematics, vol. 87 (1990), Birkhäuser: Birkhäuser Basel), 247-436
[33]Vigué-Poirrier, M.; Burghelea, D., A model for cyclic homology and algebraic \(K\)-theory of l-connected topological spaces, J. Diff. Geom., 22, 243-253 (1985) ·Zbl 0595.55009
[34]Verdier, J.-L., Catégories dérivées, état 0, SGA 4 1/2, (Lecture Notes in Mathematics, vol. 569 (1977), Springer: Springer Berlin), 262-311 ·Zbl 0407.18008
[35]Verdier, J.-L., Des catégories dérivées des catégories abéliennes, Astérisque, 239, 1-253 (1996) ·Zbl 0882.18010
[36]Waldhausen, F., Algebraic \(K\)-theory of spaces, (Lecture Notes in Mathematics, vol. 1126 (1985), Springer: Springer Berlin), 318-419 ·Zbl 0579.18006
[37]Weibel, C. A., Cyclic homology for schemes, (Proc. Amer. Math. Soc., 124 (1996)), 1655-1662 ·Zbl 0855.19002
[38]Weibel, C. A.; Yao, D., Localization for the \(K\)-theory of commutative rings, (Algebraic \(K\)-theory, Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure. Algebraic \(K\)-theory, Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure, 1989. Algebraic \(K\)-theory, Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure. Algebraic \(K\)-theory, Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure, 1989, Contemporary Mathematics, 125 (1992)), 219-230 ·Zbl 0780.19007
[39]Yao, D., Higher algebraic \(K\)-theory of admissible abelian categories and localization theorems, J. Pure Appl. Algebra, 77, 263-339 (1992) ·Zbl 0746.19006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp