Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Quasiconformal maps in metric spaces with controlled geometry.(English)Zbl 0915.30018

For a long time it has been an open problem in the quasiconformal mapping theory to prove, by simple geometric means, that the local quasiconformality condition implies the global condition. This means the following: If a homeomorphism \(f:D\to\mathbb{R}^n\), \(D\subset\mathbb{R}^n\) a domain, satisfies \(H_f(x)\leq H\) for all \(x\in D\), then it satisfies a global or semiglobal quasisymmetry condition \(H_f(x,r)\leq H'\). Here \(H_f(x,r)= L(x,f,r)/l(x,f,r)\), \(0<r<d(x,\partial D)\), and \(H_f(x)=\limsup_{r\to 0}H_f(x,r)\). Now these conditions make perfect sense for homeomorphisms \(f:X\to Y\) between metric spaces \(X\) and \(Y\). The authors show that the pointwise condition on \(H_f(x)\) is quantitatively equivalent to the global or semiglobal quasisymmetry condition in a large class of metric spaces, including \(\mathbb{R}^n\) and Carnot-Carathéodory spaces. A natural assumption is that \(X\) and \(Y\) are equipped with measures which fit together with the metric structure – \(Q\)-regular spaces: \(C^{-1}\mathbb{R}^Q\leq \mu(B(x,\mathbb{R})) \leq C\mathbb{R}^Q\), \(Q>1\). In [J. Heinonen andP. Koskela, Invent Math. 120, No. 1, 61-79 (1995;Zbl 0832.30013)] a discrete modulus was employed but here it is replaced by a continuous approach; for this the conecpt of the weak gradientS. Semmes, Publ. Math. 40, 4ll–430] is used. A central idea is to study Loewner spaces, i.e., spaces which have a lower bound for the modulus (or capacity) of a curve family connecting two continua in terms of the diameters and the distance of the continua. The modulus is the \(p\)-modulus with \(p\) = Hausdorff dimension of \(X\). Now the conclusion from the pointwise condition to the global condition follows provided that \(X\) is a Loewner spaee and \(Y\) is linearly locally connected. The Loewner condition is closely related to the Poincaré inequality. Absolute continuity of quasiconformal mappings is also studied in the metric setup.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

Citations:

Zbl 0832.30013

Cite

References:

[1]Assouad, P., Plongements lipschitziens dansR n .Bull. Soc. Math. France, 111 (1983), 429–448. ·Zbl 0597.54015
[2]Beurling, A. &Ahlfors, L. V., The boundary correspondence under quasiconformal mappings,Acta Math., 96 (1956), 125–142. ·Zbl 0072.29602 ·doi:10.1007/BF02392360
[3]Bojarski, B., Homeomorphic solutions of Beltrami systems.Dokl. Akad. Nauk SSSR, 102 (1955), 661–664 (Russian).
[4]Bourdon, M. & Pajot, H., Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings. To appear inProc. Amer. Math. Soc. ·Zbl 0924.30030
[5]Buser, P., A note on the isoperimetric constant.Ann. Sci. École Norm. Sup. (4), 15 (1982), 213–230. ·Zbl 0501.53030
[6]Cannon, J. W., The combinatorial Riemann mapping theorem.Acta Math., 173 (1994), 155–234. ·Zbl 0832.30012 ·doi:10.1007/BF02398434
[7]Cheeger, J. &Colding, T. H., Almost rigidity of warped products and the structure of spaces with Ricci curvature bounded below.C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 353–357. ·Zbl 0840.53024
[8]Coifman, R. &Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals.Studia Math., 51 (1974), 241–250. ·Zbl 0291.44007
[9]Cannon, J. W., Floyd, W. J. &Parry, W. R., Squaring rectangles: The finite Riemann mapping theorem.Contemp. Math., 169 (1994), 133–212. ·Zbl 0818.20043
[10]Chavel, I.,Riemannian Geometry–A Modern Introduction. Cambridge Tracts in Math., 108. Cambridge Univ. Press, Cambridge, 1993. ·Zbl 0810.53001
[11]Cannon, J. W. &Swenson, E. L., Recognizing constant curvature discrete groups in dimension 3.Trans. Amer. Math. Soc., 350 (1998), 809–849. ·Zbl 0910.20024 ·doi:10.1090/S0002-9947-98-02107-2
[12]Coulhon, T. &Saloff-Coste, L., Variétés riemanniennes isométriques à l’infini.Rev. Mat. Iberoamericana, 11 (1995), 687–726. ·Zbl 0845.58054
[13]Coifman, R. &Weiss, G.,Analyse harmonique non-commutative sur certains espaces homogènes. Lecture Notes in Math., 242. Springer-Verlag, Berlin-New York, 1971. ·Zbl 0224.43006
[14]David, G. &Semmes, S., StrongA weights, Sobolev inequalities and quasiconformal mappings, inAnalysis and Partial Differential Equations, pp. 101–111. Lecture Notes in Pure and Appl. Math., 122. Dekker, New York, 1990. ·Zbl 0752.46014
[15]–,Singular Integrals and Rectifiable Sets in R n :Au-delà des graphes lipschitziens. Astérisque, 193. Soc. Math. France, Paris, 1991. ·Zbl 0743.49018
[16]–,Analysis of and on Uniformly Rectifiable Sets. Math. Surveys Monogr., 38. Amer. Math. Soc., Providence, RI, 1993. ·Zbl 0832.42008
[17]Federer, H.,Geometric Measure Theory. Grundlehren Math. Wiss., 153. Springer-Verlag, New York, 1969. ·Zbl 0176.00801
[18]Fuglede, B., Extremal length and functional completion.Acta Math., 98 (1957), 171–219. ·Zbl 0079.27703 ·doi:10.1007/BF02404474
[19]Gehring, F. W., The definitions and exceptional sets for quasiconformal mappings.Ann. Acad. Sci. Fenn. Math., 281 (1960), 1–28. ·Zbl 0090.05303
[20]–, Symmetrization of rings in space.Trans. Amer. Math. Soc., 101 (1961), 499–519. ·Zbl 0104.30002 ·doi:10.1090/S0002-9947-1961-0132841-2
[21]–, TheL P-integrability of the partial derivatives of a quasiconformal mapping.Acta Math., 130 (1973), 265–277. ·Zbl 0258.30021 ·doi:10.1007/BF02392268
[22]Ghys, E. &Harpe, P. de la,Sur les groupes hyperboliques d’après Mikhael Gromov. Progr. Math., 83. Birkhäuser, Boston, MA, 1990. ·Zbl 0731.20025
[23]Gromov, M.,Structures métriques pour les variétés riemanniennes. Edited by J. Lafontaine and P. Pansu. Textes Mathématiques, 1. CEDIC, Paris, 1981.
[24]Gehring, F. W. &Martio, O., Quasiextremal distance domains and extension of quasiconformal mappings.J. Analyse Math., 45 (1985), 181–206. ·Zbl 0596.30031 ·doi:10.1007/BF02792549
[25]Gromov, M. &Pansu, P., Rigidity of lattices: An introduction, inGeometric Topology: Recent Developments. Lecture Notes in Math., 1504. Springer-Verlag, Berlin-New York, 1991. ·Zbl 0786.22015
[26]Gromov, M., Carnot-Carathéodory spaces seen from within, inSub-Riemannian Geometry, pp. 79–323. Progr. Math., 144. Birkhäuser, Basel, 1996. ·Zbl 0864.53025
[27]Gilbarg, D. &Trudinger, N. S.,Elliptic Partial Differential Equations of Second Order, 2nd edition. Grundlehren Math. Wiss., 224. Springer-Verlag, Berlin-New York, 1983. ·Zbl 0562.35001
[28]Heinonen, J., Quasiconformal mappings onto John domains.Rev. Mat. Iberoamericana, 5 (1989), 97–123. ·Zbl 0712.30017
[29]–, A capacity estimate on Carnot groups.Bull. Sci. Math., 119 (1995), 475–484. ·Zbl 0842.22007
[30]Hajsz, P., Sobolev spaces on an arbitrary metric space.Potential Anal., 5 (1996), 403–415.
[31]Hajsz, P. &Koskela, P., Sobolev meets Poincaré.C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1211–1215. ·Zbl 0837.46024
[32]Hesse, J., Ap-extremal length andp-capacity equality.Ark. Mat., 13 (1975), 131–144. ·Zbl 0302.31009 ·doi:10.1007/BF02386202
[33]Heinonen, J. &Koskela, P., Definitions of quasiconformality.Invent. Math., 120 (1995), 61–79. ·Zbl 0832.30013 ·doi:10.1007/BF01241122
[34]–, From local to global in quasiconformal structures.Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 554–556. ·Zbl 0842.30016 ·doi:10.1073/pnas.93.2.554
[35]Heinonen, J., Kilpeläinen, T. &Martio, O.,Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, New York, 1993. ·Zbl 0780.31001
[36]Hocking, J. G. &Young, G. S.,Topology. Academic Press, Reading, MA, 1959.
[37]Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander’s condition.Duke Math. J., 53 (1986), 503–523. ·Zbl 0614.35066 ·doi:10.1215/S0012-7094-86-05329-9
[38]Koskela, P., Removable sets for Sobolev spaces. To appear inArk. Mat. ·Zbl 1070.46502
[39]Koskela, P. &MacManus, P., Quasiconformal mappings and Sobolev spaces.Studia Math., 131 (1998), 1–17. ·Zbl 0918.30011
[40]Korányi, A. &Reimann, H. M., Quasiconformal mappings on the Heisenberg group.Invent. Math., 80 (1985), 309–338. ·Zbl 0567.30017 ·doi:10.1007/BF01388609
[41]–, Foundations for the theory of quasiconformal mappings on the Heisenberg group.Adv. in Math., 111 (1995), 1–87. ·Zbl 0876.30019 ·doi:10.1006/aima.1995.1017
[42]Korevaar, J. N. &Schoen, R. M., Sobolev spaces and harmonic maps for metric space targets.Comm. Anal. Geom., 1 (1993), 561–659. ·Zbl 0862.58004
[43]Loewner, C., On the conformal capacity in space.J. Math. Mech., 8 (1959), 411–414. ·Zbl 0086.28203
[44]Mattila, P.,Geometry of Sets and Measures in Euclidean Spaces. Cambridge Stud. Adv. Math., 44. Cambridge Univ. Press, Cambridge, 1995. ·Zbl 0819.28004
[45]Margulis, G. A. &Mostow, G. D., The differential of a quasiconformal mapping of a Carnot-Carathéodory space.,Geom. Funct. Anal., 5 (1995), 402–433. ·Zbl 0910.30020 ·doi:10.1007/BF01895673
[46]Mostow, G. D.,Strong Rigidity of Locally Symmetric Spaces. Princeton Univ. Press, Princeton, NJ, 1973. ·Zbl 0265.53039
[47]–, A remark on quasiconformal mappings on Carnot groups.Michigan Math. J., 41 (1994), 31–37. ·Zbl 0898.22006 ·doi:10.1307/mmj/1029004912
[48]Maheux, P. &Saloff-Coste, L., Analyse sur les boules d’un opérateur souselliptique.Math. Ann., 303 (1995), 713–740. ·Zbl 0836.35106 ·doi:10.1007/BF01461013
[49]Näkki, R., Extension of Loewner’s capacity theorem.Trans. Amer. Math. Soc., 180 (1973), 229–236. ·Zbl 0272.30024
[50]Pansu, P., Quasiisométries des variétés à courbure négative. Thesis, Université Paris VII, 1987.
[51]–, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.Ann. of Math., 129 (1989), 1–60. ·Zbl 0678.53042 ·doi:10.2307/1971484
[52]–, Dimension conforme et sphère à l’infini des variétés à courbure négative.Ann. Acad. Sci. Fenn. Math., 14 (1989), 177–212. ·Zbl 0722.53028
[53]Paulin, P., Un groupe hyperbolique est déterminé par son bord.J. London Math. Soc., 54 (1996), 50–74. ·Zbl 0854.20050
[54]Reimann, H. M., An estimate for pseudoconformal capacities on the sphere.Ann. Acad. Sci. Fenn. Math., 14 (1989), 315–324. ·Zbl 0726.31007
[55]Rudin, W.,Real and Complex Analysis, 2nd edition. McGraw-Hill, New York-Düsseldorf-Johannesburg, 1974. ·Zbl 0278.26001
[56]Semmes, S., Bilipschitz mappings and strongA weights.Ann. Acad. Sci. Fenn. Math., 18 (1993), 211–248. ·Zbl 0742.46010
[57]–, On the nonexistence of bilipschitz parameterizations and geometric problems aboutA weights.Rev. Mat. Iberoamericana, 12 (1996), 337–410. ·Zbl 0858.46017
[58]–, Good metric spaces without good parameterizations.Rev. Math. Iberoamericana, 12 (1996), 187–275. ·Zbl 0854.57018
[59]–, Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincarè inequalities.Selecta Math. (N.S.), 2 (1996), 155–295. ·Zbl 0870.54031 ·doi:10.1007/BF01587936
[60]–, Some remarks about metric spaces, spherical mappings, functions and their derivatives.Publ. Math., 40 (1996), 411–430. ·Zbl 0927.46021
[61]Saloff-Coste, L., Uniformly elliptic operators on Riemannian manifolds.J. Differential Geom., 36 (1992), 417–450. ·Zbl 0735.58032
[62]Stein, E. M.,Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ, 1970. ·Zbl 0207.13501
[63]–,Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Univ. Press, Princeton, NJ, 1993. ·Zbl 0821.42001
[64]Strömberg, J. D. &Torchinsky, A.,Weighted Hardy Spaces, Lecture Notes in Math., 1381. Springer-Verlag, Berlin-New York, 1989. ·Zbl 0676.42021
[65]Sullivan, D. P., Hyperbolic geometry and homeomorphisms, inGeometric Topology (Athens, GA, 1977), pp. 543–555. Academic Press, New York-London, 1979.
[66]Tukia, P. &Väisälä, J., Quasisymmetric embeddings of metric spaces.Ann. Acad. Sci. Fenn. Math., 5 (1980), 97–114. ·Zbl 0403.54005
[67]Tyson, J., Quasiconformality and quasisymmetry in metric measure spaces. To appear inAnn. Acad. Sci. Fenn. Math. ·Zbl 0910.30022
[68]Väisälä, J.,Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math., 229. Springer-Verlag, Berlin-New York, 1971. ·Zbl 0221.30031
[69]–, Quasisymmetric embeddings in Euclidean spaces.Trans. Amer. Math. Soc., 264 (1981), 191–204. ·Zbl 0456.30018 ·doi:10.1090/S0002-9947-1981-0597876-7
[70]–, Quasimöbius maps.J. Analyse Math., 44 (1984/85), 218–234. ·Zbl 0593.30022 ·doi:10.1007/BF02790198
[71]–, Quasiconformal maps of cylindrical domains.Acta Math., 162 (1989), 201–225. ·Zbl 0674.30017 ·doi:10.1007/BF02392837
[72]–, Free quasiconformality in Banach spaces, I.Ann. Acad. Sci. Fenn. Math., 15 (1990), 355–379.
[73]–, Free quasiconformality in Banach spaces, II.Ann. Acad. Sci. Fenn. Math., 16 (1991), 255–310.
[74]Vodop’yanov, S. K. &Greshnov, A. V., Analytic properties of quasiconformal mappings on Carnot groups.Siberian Math. J., 36 (1995), 1142–1151. ·Zbl 0891.30013 ·doi:10.1007/BF02106836
[75]Varopoulos, N. Th., Saloff-Coste, L. &Coulhon, T.,Analysis and Geometry on Groups. Cambridge Tracts in Math., 100. Cambridge Univ. Press, Cambridge, 1992. ·Zbl 0813.22003
[76]Vuorinen, M.,Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319. Springer-Verlag, New York, 1988. ·Zbl 0646.30025
[77]Ziemer, W. P., Extremal length andp-capacity.Michigan Math. J., 16 (1969), 43–51. ·Zbl 0172.38701 ·doi:10.1307/mmj/1029000164
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp