Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The classical moment problem as a self-adjoint finite difference operator.(English)Zbl 0910.44004

In this comprehensive exposition, the author discusses the classical moment problem from the theory of finite difference operators. The Stieltjes and the Hamburger moment problems are considered from the self-adjointness point of view. As an advantage of this approach it is shown that the Nevanlinna functions appear as elements of a transfer matrix and the convergence of Padé approximants is a strong resolvent convergence of finite matrix approximations to a Jacobi matrix. New results on the convergence of certain Padé approximants for Hamburger series are obtained.

MSC:

44A60 Moment problems
47A57 Linear operator methods in interpolation, moment and extension problems
39A70 Difference operators
41A21 Padé approximation

Cite

References:

[1]Akhiezer, N. I., The Classical Moment Problem (1965), Hafner: Hafner New York ·Zbl 0135.33803
[2]Akhiezer, N. I.; Glazman, I. M., Theory of Linear Operators in Hilbert Space (1961), Ungar: Ungar New York ·Zbl 0098.30702
[3]Alonso, A.; Simon, B., The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory, 4, 251-270 (1980) ·Zbl 0467.47017
[4]Baker, G.; Graves-Morris, P., Padé Approximants (1996), Cambridge Univ. Press: Cambridge Univ. Press New York ·Zbl 0923.41001
[5]Dunford, N.; Schwartz, J., Linear Operators, II. Spectral Theory (1963), Interscience: Interscience New York ·Zbl 0128.34803
[6]F. Gesztesy, B. Simon, \(m\); F. Gesztesy, B. Simon, \(m\)
[7]de Lamadrid, J. Gil, Determinacy theory for the Livšic moments problem, J. Math. Anal. Appl., 34, 429-444 (1971) ·Zbl 0224.47012
[8]Hamburger, H., Über eine Erweiterung des Stieltjesschen Momentproblems, Math. Ann., 81, 235-319 (1920) ·JFM 47.0427.04
[9]Ismail, M. E.H.; Masson, D., \(qq\), Trans. Amer. Math. Soc., 346, 63-116 (1994) ·Zbl 0812.33012
[10]M. E. H. Ismail, M. Rahman, The \(q\); M. E. H. Ismail, M. Rahman, The \(q\) ·Zbl 0893.33009
[11]S. Jitomirskaya, Y. Last, Power law subordinacy and singular spectra, I. Half-line operators; S. Jitomirskaya, Y. Last, Power law subordinacy and singular spectra, I. Half-line operators ·Zbl 0991.81021
[12]Kato, T., Perturbation Theory of Linear Operators (1980), Springer-Verlag: Springer-Verlag New York ·Zbl 0435.47001
[13]Katznelson, Y., An Introduction to Harmonic Analysis (1976), Dover: Dover New York ·Zbl 0169.17902
[14]U. Keich, 1997; U. Keich, 1997
[15]Krein, M. G., Chebyshev’s and Markov’s ideas in the theory of limiting values of integrals and their further development, Uspekhi Matem. Nauk., 44 (1951) ·Zbl 0044.05203
[16]Krein, M. G., On a generalization of an investigation by Stieltjes, Dokl. Akad. Nauk SSSR, 87 (1952) ·Zbl 0049.34702
[17]Krein, M. G., Some new problems in the theory of oscillations of Sturm systems, Prikl. Mat. Mekh., 16, 555-568 (1952) ·Zbl 0048.17604
[18]Krein, M. G., On an extrapolation problem due to Kolmogorov, Dokl. Akad. Nauk. SSSR, 46, 306-309 (1945) ·Zbl 0063.03356
[19]Landau, H., The classical moment problem: Hilbertian proofs, J. Funct. Anal., 38, 255-272 (1980) ·Zbl 0446.44006
[20]Langer, R. W., More determinacy theory for the Livšic moments problem, J. Math. Anal. Appl., 56, 586-616 (1976) ·Zbl 0353.44009
[21]Livšic, M. S., On an application of the theory of hermitian operators to the generalized problem of moments, Dokl. Akad. Nauk. SSSR, 26, 17-22 (1940)
[22]Loeffel, J. J.; Martin, A.; Simon, B.; Wightman, A. S., Padé approximants and the anharmonic oscillator, Phys. Lett. B, 30, 656-658 (1969)
[23]Masson, D.; McClary, W., Classes of \(C^∞\), J. Funct. Anal., 10, 19-32 (1972) ·Zbl 0234.47026
[24]Naimark, M. A., Self-adjoint extensions of the second kind of a symmetric operator, Izv. Akad. Nauk SSSR, 4, 90-104 (1940) ·Zbl 0025.06402
[25]Naimark, M. A., Spectral functions of a symmetric operator, Izv. Akad. Nauk SSSR, 4, 309-318 (1940) ·Zbl 0025.06403
[26]Naimark, M. A., On spectral functions of a symmetric operator, Izv. Akad. Nauk SSSR, 7, 285-296 (1943) ·Zbl 0061.26005
[27]Naimark, M. A., On extremal spectral functions of a symmetric operator, Dokl. Akad. Nauk SSSR, 54, 7-9 (1946) ·Zbl 0061.26006
[28]Nelson, E., Analytic vectors, Ann. of Math., 70, 572-615 (1959) ·Zbl 0091.10704
[29]Nevanlinna, R., Asymptotische Entwickelungen beschränkter Functionen und das Stieltjessche Momentenproblem, Ann. Acad. Sci. Fenn. A, 18 (1922) ·JFM 48.1226.02
[30]Nussbaum, A., Quasi-analytic vectors, Ark. Mat., 6, 179-191 (1965) ·Zbl 0182.46102
[31]Nussbaum, A., A note on quasi-analytic vectors, Studia Math., 33, 305-310 (1969) ·Zbl 0189.43903
[32]Pearson, D. B., Quantum Scattering and Spectral Theory (1988), Academic Press: Academic Press London ·Zbl 0673.47011
[33]Reed, M.; Simon, B., Methods of Modern Mathematical Physics, I. Functional Analysis (1972), Academic Press: Academic Press New York ·Zbl 0242.46001
[34]Reed, M.; Simon, B., Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness (1975), Academic Press: Academic Press New York ·Zbl 0308.47002
[35]Shohat, J. A.; Tamarkin, J. D., The problem of moments, Amer. Math. Soc. Surveys, 1 (1943) ·Zbl 0063.06973
[36]Simon, B., Coupling constant analyticity for the anharmonic oscillator, Ann. Phys., 58, 76-136 (1970)
[37]Simon, B., A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Funct. Anal., 28, 377-385 (1978) ·Zbl 0413.47029
[38]Stieltjes, T., Recherches sur les fractions continues, Anns. Fac. Sci. Univ. Toulouse, 8, J1-J122 (1894-1895) ·JFM 25.0326.01
[39]Stone, M. H., Linear Transformations in Hilbert Space. Linear Transformations in Hilbert Space, Amer. Math. Soc. Colloq. (1932), Publ. XV: Publ. XV New York ·Zbl 0005.16403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp