65N30 | Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs |
65N12 | Stability and convergence of numerical methods for boundary value problems involving PDEs |
78A25 | Electromagnetic theory (general) |
65N15 | Error bounds for boundary value problems involving PDEs |
35L50 | Initial-boundary value problems for first-order hyperbolic systems |
35Q60 | PDEs in connection with optics and electromagnetic theory |
[1] | Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. ·Zbl 0383.65058 |
[2] | G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John; Grundlehren der Mathematischen Wissenschaften, 219. ·Zbl 0331.35002 |
[3] | R. HOLLAND, Finite-difference solution of Maxwell’s equations in generalized nonorthogonal coordinates, IEEE Trans. Nuclear Science, Vol. NS-30, 1983, pp. 4589-4591. |
[4] | T.G. JURGENS, A. TAFLOVE, K.UMASHANKAR and T.G. MOORE, Finite-difference time-domain modeling of curved surfaces, IEEE Trans. Antennas and Propagation, Vol. 40, 1992, pp. 1703-1708. |
[5] | T.G. JURGENS and A. TAFLOVE, Three-dimensional contour FDTD modeling of scattering from single and multiple bodies, IEEE Trans. Antennas and Propagation, Vol. 41, 1993, pp. 1429-1438. |
[6] | J.-F. LEE, Numerical solutions of TM scattering using obliquely Cartesian finite difference time domain algorithm, IEEE Proc. H (Microwaves, Antennas and Propagation), Vol. 140, 1992, pp. 23-28. |
[7] | Niel K. Madsen, Divergence preserving discrete surface integral methods for Maxwell’s curl equations using non-orthogonal unstructured grids, J. Comput. Phys. 119 (1995), no. 1, 34 – 45. ·Zbl 0822.65107 ·doi:10.1006/jcph.1995.1114 |
[8] | Niel K. Madsen and Richard W. Ziolkowski, Numerical solution of Maxwell’s equations in the time domain using irregular nonorthogonal grids, Wave Motion 10 (1988), no. 6, 583 – 596. ·Zbl 0672.73029 ·doi:10.1016/0165-2125(88)90013-3 |
[9] | N. MADSEN and R.W. ZIOLKOWSKI, A three dimensional modified finite volume technique for Maxwell’s equations, Electromagnetics, Vol. 10, 1990, pp. 147-161. |
[10] | B.J. MCCARTIN and J.F. DICELLO, Three dimensional finite difference frequency domain scattering computation using the Control Region Approximation, IEEE Trans. Magnetics, Vol. 25, No. 4, 1989, pp. 3092-3094. |
[11] | Peter Monk and Endre Süli, A convergence analysis of Yee’s scheme on nonuniform grids, SIAM J. Numer. Anal. 31 (1994), no. 2, 393 – 412. ·Zbl 0805.65121 ·doi:10.1137/0731021 |
[12] | PETER MONK and ENDRE SULI, Error estimates for Yee’s method on nonuniform grids, IEEE Trans. Magnetics, Vol 30, 1994, pp. 3200-3203. |
[13] | R. A. Nicolaides, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal. 29 (1992), no. 1, 32 – 56. ·Zbl 0745.65063 ·doi:10.1137/0729003 |
[14] | R.A. NICOLAIDES, Flow discretization by complementary volume techniques, AIAA paper 89-1978, Proceedings of 9th AIAA CFD Meeting, Buffalo, NY, June 1989. |
[15] | R. A. Nicolaides, Analysis and convergence of the MAC scheme. I. The linear problem, SIAM J. Numer. Anal. 29 (1992), no. 6, 1579 – 1591. ·Zbl 0764.76051 ·doi:10.1137/0729091 |
[16] | R. A. Nicolaides and X. Wu, Analysis and convergence of the MAC scheme. II. Navier-Stokes equations, Math. Comp. 65 (1996), no. 213, 29 – 44. ·Zbl 0852.76066 |
[17] | R.A. NICOLAIDES and X.WU, Covolume solutions of three dimensional div-curl equations, SIAM J. Numer. Anal. Vol. 34, No. 6, pp. 2195-2203 (1997). CMP 98:04 ·Zbl 0889.35006 |
[18] | K. YEE, Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media, IEEE Trans. ·Zbl 1155.78304 |