Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions.(English)Zbl 0907.65116

This paper is devoted to the study of obtaining estimates for covolume discretizations of Maxwell’s equations in three space dimensions. It is shown that the spatial convergence rate is one order higher than for the unstructured case.
Reviewer: C.L.Koul (Jaipur)

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
65N15 Error bounds for boundary value problems involving PDEs
35L50 Initial-boundary value problems for first-order hyperbolic systems
35Q60 PDEs in connection with optics and electromagnetic theory

Cite

References:

[1]Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. ·Zbl 0383.65058
[2]G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John; Grundlehren der Mathematischen Wissenschaften, 219. ·Zbl 0331.35002
[3]R. HOLLAND, Finite-difference solution of Maxwell’s equations in generalized nonorthogonal coordinates, IEEE Trans. Nuclear Science, Vol. NS-30, 1983, pp. 4589-4591.
[4]T.G. JURGENS, A. TAFLOVE, K.UMASHANKAR and T.G. MOORE, Finite-difference time-domain modeling of curved surfaces, IEEE Trans. Antennas and Propagation, Vol. 40, 1992, pp. 1703-1708.
[5]T.G. JURGENS and A. TAFLOVE, Three-dimensional contour FDTD modeling of scattering from single and multiple bodies, IEEE Trans. Antennas and Propagation, Vol. 41, 1993, pp. 1429-1438.
[6]J.-F. LEE, Numerical solutions of TM scattering using obliquely Cartesian finite difference time domain algorithm, IEEE Proc. H (Microwaves, Antennas and Propagation), Vol. 140, 1992, pp. 23-28.
[7]Niel K. Madsen, Divergence preserving discrete surface integral methods for Maxwell’s curl equations using non-orthogonal unstructured grids, J. Comput. Phys. 119 (1995), no. 1, 34 – 45. ·Zbl 0822.65107 ·doi:10.1006/jcph.1995.1114
[8]Niel K. Madsen and Richard W. Ziolkowski, Numerical solution of Maxwell’s equations in the time domain using irregular nonorthogonal grids, Wave Motion 10 (1988), no. 6, 583 – 596. ·Zbl 0672.73029 ·doi:10.1016/0165-2125(88)90013-3
[9]N. MADSEN and R.W. ZIOLKOWSKI, A three dimensional modified finite volume technique for Maxwell’s equations, Electromagnetics, Vol. 10, 1990, pp. 147-161.
[10]B.J. MCCARTIN and J.F. DICELLO, Three dimensional finite difference frequency domain scattering computation using the Control Region Approximation, IEEE Trans. Magnetics, Vol. 25, No. 4, 1989, pp. 3092-3094.
[11]Peter Monk and Endre Süli, A convergence analysis of Yee’s scheme on nonuniform grids, SIAM J. Numer. Anal. 31 (1994), no. 2, 393 – 412. ·Zbl 0805.65121 ·doi:10.1137/0731021
[12]PETER MONK and ENDRE SULI, Error estimates for Yee’s method on nonuniform grids, IEEE Trans. Magnetics, Vol 30, 1994, pp. 3200-3203.
[13]R. A. Nicolaides, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal. 29 (1992), no. 1, 32 – 56. ·Zbl 0745.65063 ·doi:10.1137/0729003
[14]R.A. NICOLAIDES, Flow discretization by complementary volume techniques, AIAA paper 89-1978, Proceedings of 9th AIAA CFD Meeting, Buffalo, NY, June 1989.
[15]R. A. Nicolaides, Analysis and convergence of the MAC scheme. I. The linear problem, SIAM J. Numer. Anal. 29 (1992), no. 6, 1579 – 1591. ·Zbl 0764.76051 ·doi:10.1137/0729091
[16]R. A. Nicolaides and X. Wu, Analysis and convergence of the MAC scheme. II. Navier-Stokes equations, Math. Comp. 65 (1996), no. 213, 29 – 44. ·Zbl 0852.76066
[17]R.A. NICOLAIDES and X.WU, Covolume solutions of three dimensional div-curl equations, SIAM J. Numer. Anal. Vol. 34, No. 6, pp. 2195-2203 (1997). CMP 98:04 ·Zbl 0889.35006
[18]K. YEE, Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media, IEEE Trans. ·Zbl 1155.78304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp