Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Finite volume methods on Voronoi meshes.(English)Zbl 0903.65083

The article is concerned with finite volume methods for (stationary) diffusion-convection equations on convex domains, with Dirichlet boundary conditions. The author proposes two schemes on Voronoi meshes and investigates their stability, monotonicity, and convergence properties. Several numerical examples, partly diffusion and partly convection dominated, illustrate the theoretical convergence results.
Reviewer: M.Plum (Karlsruhe)

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Software:

Triangle

Cite

References:

[1]Kershaw, J. Comput. Phys. 39 pp 375– (1987) ·Zbl 0467.76080 ·doi:10.1016/0021-9991(81)90158-3
[2]Tikhonov, Zh. Vychisl. Mat. i Mat. Fiz 2 pp 812– (1962)
[3]Kreiss, Math. Comp. 47 pp 537– (1986) ·doi:10.1090/S0025-5718-1986-0856701-5
[4]Manteuffel, Math. Comp. 47 pp 511– (1986) ·Zbl 0635.65093 ·doi:10.1090/S0025-5718-1986-0856700-3
[5], , and , ”A control volume mixed method on irregular quadrilateral and hexalateral grids,” to appear.
[6]and , ”Analysis of finite volume methods,” Technical Report 19, Universite de Pau et des Pays de L’adour, Pau, France, 1995.
[7]and , ”Convergence of finite volume methods,” Technical Report 20, Universite de Pau et des Pays de L’adour, Pau, France, 1995.
[8]Arbogast, SIAM J. Numer. Anal. 34 pp 828– (1997) ·Zbl 0880.65084 ·doi:10.1137/S0036142994262585
[9]Weiser, SIAM J. Numer. Anal. 25 pp 351– (1988) ·Zbl 0644.65062 ·doi:10.1137/0725025
[10], and , ”A discretization for convection dominated diffusion problems based combining the mixed method with the discontinuous Galerkin procedure,” University of Wyoming, to appear.
[11]Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, 1989. ·doi:10.1137/1.9781611971026
[12]Cai, Numer. Math. 58 pp 713– (1991) ·Zbl 0731.65093 ·doi:10.1007/BF01385651
[13]Schmidt, Computing 51 pp 271– (1993) ·Zbl 0787.65075 ·doi:10.1007/BF02238536
[14]Vassilevski, SIAM J. Sci. Stat. Comput. 13 pp 1287– (1992) ·Zbl 0813.65115 ·doi:10.1137/0913073
[15]Herbin, Numer. Meth. for Partial Diff. Equal. 11 pp 165– (1995) ·Zbl 0822.65085 ·doi:10.1002/num.1690110205
[16]Finite Difference Methods on Irregular Networks, Akademie-Verlag, Berlin, 1987. ·doi:10.1007/978-3-0348-7196-9
[17]Morton, IMA J. Numer. Anal. 11 pp 241– (1991) ·Zbl 0729.65087 ·doi:10.1093/imanum/11.2.241
[18]Mackenzie, Math. Comp. 60 pp 189– (1992) ·doi:10.1090/S0025-5718-1993-1153168-0
[19]Süli, Math. Comp. 59 pp 359– (1992) ·Zbl 0767.65072 ·doi:10.2307/2153062
[20]Conservative Finite-Difference Methods on General Grids, CRC Press, New York, 1996.
[21]Numerical Solutions of Convection-Diffusion Problems, Chapman & Hall, London, 1996.
[22], and , Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 1996. ·doi:10.1007/978-3-662-03206-0
[23]Kerhoven, Numer. Math. 57 pp 561– (1990) ·Zbl 0708.65102 ·doi:10.1007/BF01386428
[24], , and , ”Modeling reservoir geometry with irregular grids,” SPE Reservoir Engineering, May 1991, pp. 225-232.
[25]Palagi, SPE Reservoir Engineering. February pp 15– (1994) ·doi:10.2118/24072-PA
[26]”An introduction to finite volume methods for linear elliptic equations of second order,” Technical Report No. 163, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, 1995.
[27]Sobolev Spaces, Academic Press, New York, 1975. ·Zbl 0314.46030
[28]and , Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972.
[29]Vanselow, Computing 57 pp 93– (1996) ·Zbl 0858.65109 ·doi:10.1007/BF02276874
[30]Aurenhammer, ACM Comput. Surveys. 23 pp 345– (1991) ·doi:10.1145/116873.116880
[31]”Voronoi diagrams and Delaunay triangulations,” in Computing in Euclidean Geometry, Volume 1 of Lecture Notes Series of Computing, and , editors, World Scientific, 1992, pp. 193-233. ·doi:10.1142/9789814355858_0006
[32]Automatic mesh generation. Application to finite element methods. John Wiley and Sons, Masson, France, 1991. ·Zbl 0808.65122
[33]and , ”Mesh generation and optimal triangulation,” in Computing in Euclidean Geometry, volume 1 of Lecture Notes Series of Computing, and , Eds., World Scientific, 1992, pp. 23-90. ·doi:10.1142/9789814355858_0002
[34]”Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator,” in Proc. First Workshop on Applied Computational Geometry, Philadelphia, Pennsylvania, ACM, 1996, pp. 124-133.
[35]The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[36]Baba, R.A.I.R.O. Analyse numerique/Numerical Anal. 15 pp 3– (1981)
[37]Heinrich, Int. J. Num. Meth. Engin. 11 pp 131– (1977) ·Zbl 0353.65065 ·doi:10.1002/nme.1620110113
[38]Theory of Difference Schemes, Nauka, Moscow, 1983 (Russian).
[39], and , Difference Schemes for Differential Equations Having Generalized Solutions, Vysshaya Shkola Publishers, Moscow, 1987 (Russian).
[40]Ewing, Math. Comp. 56 pp 437– (1991)
[41]Lazarov, SIAM J. Numer. Anal. 33 pp 31– (1996) ·Zbl 0847.65075 ·doi:10.1137/0733003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp