Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Morse theory for cell complexes.(English)Zbl 0896.57023

This paper provides a discrete Morse theory for CW-complexes. The author proves an analogue of the main theorems of the classical theory and gets in the context of PL manifolds an interesting formula of the PL Poincaré conjecture.
“The following are equivalent: (1) (PL Poincaré conjecture) Let \(M\) be a PL \(n\)-manifold which is a homotopy \(n\)-sphere. Then \(M\) is a PL \(n\)-sphere; (2) Let \(M\) be a PL \(n\)-manifold which is a homotopy \(n\)-sphere. Then, by a series of bisections, \(M\) can be subdivided to a complex which has a Morse function with exactly 2 critical points.”
The author builds also the gradient vector field of a discrete (or combinatorial) Morse function and an associated differential complex with the same homology as the underlying manifold. This discrete Morse theory can then be used to give a Morse theoretic proof à la Milnor of the PL \(s\)-cobordism theorem [J. W. Milnor, Lectures on the \(h\)-cobordism theorem (1965;Zbl 0161.20302)].
Main of the final part of the paper is devoted to characterize gradient vector fields of discete Morse functions. Doing that, the author shows that every discrete Morse function can be replaced by a self-indexing one, with the same critical points.
In spite of some misprints or change without notice (e.g. combinatorial for discrete) this paper is pleasant and not too hard to read; there are many examples. It should become a reference in the subject.

MSC:

57R70 Critical points and critical submanifolds in differential topology
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
57R80 \(h\)- and \(s\)-cobordism
57R60 Homotopy spheres, Poincaré conjecture
57Q99 PL-topology

Citations:

Zbl 0161.20302

Cite

References:

[1]Banchoff, T., Critical points and curvature for embedded polyhedra, J. Diff. Geo., 1, 245-256 (1967) ·Zbl 0164.22903
[2]Barden, D., The Structure of Manifolds (1963), Cambridge University ·Zbl 0136.20602
[3]Brehm, U.; Kühnel, W., Combinatorial manifolds with few vertices, Topology, 26, 465-473 (1987) ·Zbl 0681.57009
[4]A. Duval, A combinatorial decomposition of Simplicial complexes, Israel J. Math.; A. Duval, A combinatorial decomposition of Simplicial complexes, Israel J. Math. ·Zbl 0820.55001
[5]Eells, J.; Kuiper, N., Manifolds which are like projective planes, Inst. Hautes Etudes Sci. Publ. Math. No. 14, 5-46 (1962) ·Zbl 0109.15701
[6]Forman, R., Determinants of Laplacians on graphs, Topology, 32, 35-46 (1993) ·Zbl 0780.05041
[7]R. Forman, Witten-Morse theory for cell complexes, Topology; R. Forman, Witten-Morse theory for cell complexes, Topology ·Zbl 0929.57020
[8]Forman, R., A discrete Morse theory for cell complexes, Geometry, Topology & Physics for Raoul Bott (1995), International Press ·Zbl 0867.57018
[9]R. Forman, Combinatorial vector fields and dynamical systems, Math. Zeit.; R. Forman, Combinatorial vector fields and dynamical systems, Math. Zeit. ·Zbl 0922.58063
[10]Glaser, L. C., Geometrical Cominatorial Topology (1970), Van Nostrand-Reinhold: Van Nostrand-Reinhold New York ·Zbl 0212.55603
[11]Goresky, M.; MacPherson, R., Stratified Morse Theory. Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 14 (1988), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0639.14012
[12]Klingenberg, W., The Morse complex, Symposia Mathematica Vol. XXVI (Rome, 1980) (1982), Academic Press: Academic Press New York, p. 117-122
[13]Kosinski, A., Singularities of piecewise linear mappings. I. Mappings into the real line, Bull. Amer. Math. Soc., 68, 110-114 (1962) ·Zbl 0126.18801
[14]Kuhnel, W., Triangulations of manifolds with few vertices, Advances in Differential Geometry and Topology (1990), World Scientific: World Scientific Singapore, p. 59-114 ·Zbl 0836.57002
[15]Lundell, A.; Weingram, S., The Topology of CW Complexes (1969), Van Nostrand-Reinhold: Van Nostrand-Reinhold New York ·Zbl 0207.21704
[16]Mazur, B., Differential topology from the viewpoint of simple homotopy theory, Publ. Math. I.H.E.S., 15, 5-93 (1963) ·Zbl 0173.51203
[17]Milnor, J., Morse Theory, Annals of Mathematics Study, 51 (1962), Princeton Univ. Press: Princeton Univ. Press Princeton
[18]Milnor, J., Lectures on the h-cobordism theorem, Princeton Mathematical Notes (1965), Princeton Univ. Press: Princeton Univ. Press Princeton ·Zbl 0161.20302
[19]Morse, M., Bowls of a non-degenerate function on a compact differentiable manifold, (Cairns, S. S., Differential and Combinatorial Topology (1965), Princeton Univ. Press: Princeton Univ. Press Princeton), 81-104 ·Zbl 0159.24803
[20]Smale, S., On gradient dynamical systems, Ann. Math., 74, 199-206 (1961) ·Zbl 0136.43702
[21]Smale, S., The generalized Poincaré conjecture in dimensions greater than four, Ann. Math., 74, 391-406 (1961) ·Zbl 0099.39202
[22]Stallings, J. R., Lectures on Polyhedral Topology (1968), Tata Institute of Fundamental Research: Tata Institute of Fundamental Research Bombay ·Zbl 0182.26203
[23]Stanley, R., A combinatorial decomposition of acyclic simplicial complexes, Discrete Math., 118 (1993) ·Zbl 0782.55004
[24]J. H. C. Whitehead, Simplicial spaces, nuclei and \(m\); J. H. C. Whitehead, Simplicial spaces, nuclei and \(m\) ·Zbl 0022.40702
[25]Witten, E., Supersymmetry and Morse theory, J. Differential Geom., 17, 661-692 (1982) ·Zbl 0499.53056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp