Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements.(English)Zbl 0894.76041

The paper contains two parts. In the first one, the authors present the discontinuous finite element method in one dimension (a variational formulation, an explicit time discretization scheme, a Riemann problem, a slope limiter etc.). They further extend this method to triangular elements in conjunction with the mixed hybrid approximation for the discretization of the diffusive term. The second part of paper discusses some numerical results obtained by solving two test problems. The algorithm seems to be very useful when the transport equation becomes advection dominated.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection

Cite

References:

[1]and , Computational Methods in Subsurface Flow, Academic, San Diego, CA, 1983.
[2]Garder, Soc. Pet. Eng. 4 pp 26– (1964) ·doi:10.2118/683-PA
[3]and , ’Computer model of two-dimensional solute transport and dispersion in groundwater’, Techniques of Water-Resource Investigation of the United States Geological Survey, Book 7, Chapter C2, United States Government Printing Office, Washington, DC 1978.
[4]Douglas, SIAM J. Numer. Anal. 19 pp 871– (1982) ·Zbl 0492.65051 ·doi:10.1137/0719063
[5]Neumann, J. Comput. Phys. 41 pp 270– (1981) ·Zbl 0484.76095 ·doi:10.1016/0021-9991(81)90097-8
[6]’Eulerian-Lagrangian localized adjoint methods for advection-dominated problems’, Proc. 13th Bienn. Conf. on Numerical Analysis, Pitman, Dundee, 1989.
[7]’Eulerian-Lagrangian localized adjoint methods for contaminant transport simulations’, Proc. 10th Int. Conf. on Computational Methods in Water Resources, Kluwer, Dordrecht, 1994.
[8]Celia, Adv. Water Resources 13 pp 187– (1990) ·doi:10.1016/0309-1708(90)90041-2
[9]Oliveira, Int. j. numer methods fluids 21 pp 183– (1995) ·Zbl 0841.76041 ·doi:10.1002/fld.1650210302
[10]and , ’Modélisation du transport de contaminant par la méthode de marche au hasard: influence des variations du champ d’écoulement au cours du temps sur la dispersion’, Proc. Symp. Int. sur l’Approache Stochastique des Ecoulments Souterrains, Montvillargenne, 1985, pp. 446-458.
[11]and , ’A random walk solute transport model for selected groundwater qulaityb evaluations’, Illinois State Water Survey, Bull. 65, 1981.
[12]’Analysis of dispersion by the random walk method’, Ph.D. Thesis, Delft University, 1990.
[13]Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser, 2. Aufl, Oldenbourg, 1992.
[14]and , Computational Methods for Fluid Flow, Springer, New York, 1983. ·Zbl 0514.76001 ·doi:10.1007/978-3-642-85952-6
[15]van Leer, J. Comput. Phys. 23 pp 276– (1977) ·Zbl 0339.76056 ·doi:10.1016/0021-9991(77)90095-X
[16]Roe, Ann. Rev. Fluid Mech. 18 pp 337– (1986) ·doi:10.1146/annurev.fl.18.010186.002005
[17]Van Leer, J. Comput. Phys. 32 pp 101– (1979) ·Zbl 1364.65223 ·doi:10.1016/0021-9991(79)90145-1
[18]Chakravarthy, Lect. Notes Appl. Math. 22 pp 57– (1985)
[19]Putti, Water Resources Res. 26 pp 2865– (1990)
[20]and , Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986.
[21]Hydraulics of Groundwater, McGraw-Hill, New York, 1979.
[22]’Discontinuous finite elements for nonlinear scalar conservation laws’, Thèse de Doctorat, Université Paris IX-Dauphine, 1988.
[23]and , ’A discontinuous finite element method for scalar nonlinear conservation laws’, Rapport de Recherche INRIA, 1993.
[24]Introduction à l’Analyse Numérique Matricielle et à l’Optimisation, Masson, Paris, 1988.
[25]and , ’A mixed finite element method for the second order elliptic problems’, Mathematical Aspects of the Finite Element Method, Springer, New York, 1977.
[26]’Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes’, Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, 1977.
[27]Chavent, Adv. Water Resources 14 pp 329– (1991) ·doi:10.1016/0309-1708(91)90020-O
[28]Feike, Water Resources Res. 26 pp 1475– (1990)
[29]’Une méthode d’éléments finis discontinus pour les équations d’Euler des fluides compressibles’, Thé, Université Paris VI, 1993.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp