76M10 | Finite element methods applied to problems in fluid mechanics |
76R99 | Diffusion and convection |
[1] | and , Computational Methods in Subsurface Flow, Academic, San Diego, CA, 1983. |
[2] | Garder, Soc. Pet. Eng. 4 pp 26– (1964) ·doi:10.2118/683-PA |
[3] | and , ’Computer model of two-dimensional solute transport and dispersion in groundwater’, Techniques of Water-Resource Investigation of the United States Geological Survey, Book 7, Chapter C2, United States Government Printing Office, Washington, DC 1978. |
[4] | Douglas, SIAM J. Numer. Anal. 19 pp 871– (1982) ·Zbl 0492.65051 ·doi:10.1137/0719063 |
[5] | Neumann, J. Comput. Phys. 41 pp 270– (1981) ·Zbl 0484.76095 ·doi:10.1016/0021-9991(81)90097-8 |
[6] | ’Eulerian-Lagrangian localized adjoint methods for advection-dominated problems’, Proc. 13th Bienn. Conf. on Numerical Analysis, Pitman, Dundee, 1989. |
[7] | ’Eulerian-Lagrangian localized adjoint methods for contaminant transport simulations’, Proc. 10th Int. Conf. on Computational Methods in Water Resources, Kluwer, Dordrecht, 1994. |
[8] | Celia, Adv. Water Resources 13 pp 187– (1990) ·doi:10.1016/0309-1708(90)90041-2 |
[9] | Oliveira, Int. j. numer methods fluids 21 pp 183– (1995) ·Zbl 0841.76041 ·doi:10.1002/fld.1650210302 |
[10] | and , ’Modélisation du transport de contaminant par la méthode de marche au hasard: influence des variations du champ d’écoulement au cours du temps sur la dispersion’, Proc. Symp. Int. sur l’Approache Stochastique des Ecoulments Souterrains, Montvillargenne, 1985, pp. 446-458. |
[11] | and , ’A random walk solute transport model for selected groundwater qulaityb evaluations’, Illinois State Water Survey, Bull. 65, 1981. |
[12] | ’Analysis of dispersion by the random walk method’, Ph.D. Thesis, Delft University, 1990. |
[13] | Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser, 2. Aufl, Oldenbourg, 1992. |
[14] | and , Computational Methods for Fluid Flow, Springer, New York, 1983. ·Zbl 0514.76001 ·doi:10.1007/978-3-642-85952-6 |
[15] | van Leer, J. Comput. Phys. 23 pp 276– (1977) ·Zbl 0339.76056 ·doi:10.1016/0021-9991(77)90095-X |
[16] | Roe, Ann. Rev. Fluid Mech. 18 pp 337– (1986) ·doi:10.1146/annurev.fl.18.010186.002005 |
[17] | Van Leer, J. Comput. Phys. 32 pp 101– (1979) ·Zbl 1364.65223 ·doi:10.1016/0021-9991(79)90145-1 |
[18] | Chakravarthy, Lect. Notes Appl. Math. 22 pp 57– (1985) |
[19] | Putti, Water Resources Res. 26 pp 2865– (1990) |
[20] | and , Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986. |
[21] | Hydraulics of Groundwater, McGraw-Hill, New York, 1979. |
[22] | ’Discontinuous finite elements for nonlinear scalar conservation laws’, Thèse de Doctorat, Université Paris IX-Dauphine, 1988. |
[23] | and , ’A discontinuous finite element method for scalar nonlinear conservation laws’, Rapport de Recherche INRIA, 1993. |
[24] | Introduction à l’Analyse Numérique Matricielle et à l’Optimisation, Masson, Paris, 1988. |
[25] | and , ’A mixed finite element method for the second order elliptic problems’, Mathematical Aspects of the Finite Element Method, Springer, New York, 1977. |
[26] | ’Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes’, Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, 1977. |
[27] | Chavent, Adv. Water Resources 14 pp 329– (1991) ·doi:10.1016/0309-1708(91)90020-O |
[28] | Feike, Water Resources Res. 26 pp 1475– (1990) |
[29] | ’Une méthode d’éléments finis discontinus pour les équations d’Euler des fluides compressibles’, Thé, Université Paris VI, 1993. |