Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A generalized Jacobi theta function and quasimodular forms.(English)Zbl 0892.11015

Dijkgraaf, R. H. (ed.) et al., The moduli space of curves. Proceedings of the conference held on Texel Island, Netherlands, during the last week of April 1994. Basel: Birkhäuser. Prog. Math. 129, 165-172 (1995).
Let \(\widetilde M_* =M_*\otimes_\mathbb{C} \mathbb{C} [G_2]\) be the graded ring of quasi-modular forms for the group \(SL(2, \mathbb{Z})\) (here \(M_*\) denotes the (graded) ring of modular forms, and \(G_2= -{1\over 24} +\sum_{n\geq 1} \sigma(n) q^n\) with \(\sigma(n): = \sum_{d | n}d)\). Let \[\Theta (X,q,\zeta) =\prod_{n>0} (1-q^n) \prod_{n>0} (1-e^{n^2 X/8} q^{n/2} \zeta)(1- e ^{-n^2X/8} q^{n/2} \zeta^{-1}),\] and let \(\Theta_0 (X,q)= \sum^\infty_{n=0} A_n(q) X^{2n}\), \(A_n(q) \in\mathbb{Q} [[q]]\), be the constant term in the Laurent series \(\theta (X,q, \zeta)= \sum^\infty_{n= -\infty} \Theta_n(X,q) \zeta^n\).
By a direct computation, the authors prove that \(A_n(q) \in\widetilde M_{6n}\) for \(n\geq 0\). The coefficient of \(X^{2g-2}\) in the power series expansion of \(\log\Theta_0\) is a quasimodular form of weight \(6g-6\). The authors mention that this coefficient is equal to the generating function counting maps of curves of genus \(g>1\) to a curve of genus 1, and comment on the relation of their construction to the theory of Jacobi forms.
For the entire collection see [Zbl 0827.00037].
Reviewer: B.Z.Moroz (Bonn)

MSC:

11F11 Holomorphic modular forms of integral weight
14K25 Theta functions and abelian varieties
14H42 Theta functions and curves; Schottky problem
11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11F55 Other groups and their modular and automorphic forms (several variables)

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp